、表示三條不同的直線,表示平面,給出下列命題:
①若,則;②若,,則;
③若,則;④若,,則.
A.①②B.②③C.①④D.③④
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)如圖,已知正三棱柱的底面正三角形的邊長是2,D是的中點,直線與側面所成的角是.

⑴求二面角的大;
⑵求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)在四棱錐P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD,

PA=2AB
(1)求證:平面PAC⊥平面PBD
(2)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



本題滿分15分)如圖,在矩形中,點分別
在線段上,.沿直線
翻折成,使平面. 
(Ⅰ)求二面角的余弦值;
(Ⅱ)點分別在線段上,若沿直線將四
邊形向上翻折,使重合,求線段
的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,三棱柱中,側面底面,
,O中點.
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在上是否存在一點,使得平面,若不存在,說明理由;若存在,
確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)在直三棱柱中,,直線與平面角;

(1)求證:平面平面;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知球的半徑為1,三點都在球面上,且每兩點間的球面距離均為,則球心到平面的距離為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

斜三棱柱ABC- A1B1C1中,二面角C-A1A-B為120°,側棱AA1于另外兩條棱的距離分別為7cm、8cm,AA1=12cm,則斜三棱柱的側面積為______      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱中,,的中點,上的一點,

(Ⅰ)證明:為異面直線的公垂線;
(Ⅱ)設異面直線的夾角為45°,求二面角的大。

查看答案和解析>>

同步練習冊答案