在某市“創(chuàng)建文明城市”活動中,對800名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為[25,30)的數(shù)據(jù)不慎丟失,據(jù)此估計這800名志愿者年齡在[25,30)的人數(shù)為
 
考點:頻率分布直方圖
專題:概率與統(tǒng)計
分析:根據(jù)頻率分布直方圖中頻率和等于1,計算年齡組為[25,30)的數(shù)據(jù)頻率,求出對應(yīng)的頻數(shù)即可.
解答: 解:根據(jù)頻率分布直方圖中頻率和等于1,得;
年齡組為[25,30)的數(shù)據(jù)頻率為
1-(0.01+0.07+0.06+0.02)×5=0.2,
∴估計這800名志愿者年齡在[25,30)的人數(shù)為
800×0.2=160.
故答案為:160.
點評:本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率=
頻數(shù)
樣本容量
的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
a
|=1,|
b
|=
2

(Ⅰ)若
a
b
=
2
2
,求
a
b
的夾角
(Ⅱ)若
a
b
的夾角為135°,求|
a
+
b
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖①是邊長為30cm的正方形紙板,裁掉陰影部分后將其折疊成圖②所示的長方體盒子,已知該長方體的寬是高的2倍,則它的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2asinωxcosωx+2
3
cos2ωx-
3
(a>0,ω>0)的最大值為2,且最小正周期為π.
(I)求函數(shù)f(x)的解析式及其對稱軸方程;
(II)若f(a)=
4
3
,求sin(4α+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在一封閉的正方體容器內(nèi)裝滿水,M、N分別是AA1與C1D1的中點,由于某種原因,在D、M、N三點處各有一個小洞,為此容器內(nèi)存水最多,問應(yīng)將此容器如何放置?此時水的上表面的形狀怎樣?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的向量參數(shù)方程為(x,y,z)=(5,0,3)+t(0,3,0),當t=
1
2
時,則對應(yīng)直線上的點的坐標是( 。
A、(5,0,3)
B、(
5
2
,0,
3
2
C、(5,
3
2
,3)
D、(
5
2
3
2
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是一個平面,Γ是平面α上的一個圖形,若在平面α上存在一個定點A和一個定角θ(θ∈(0,2π),使得Γ上的任意一點以A為中心順時針(或逆時針)旋轉(zhuǎn)角θ,所得到的圖形與原圖形Γ重合,則稱點A為對稱中心,θ為旋轉(zhuǎn)角,Γ為旋轉(zhuǎn)對稱圖形,若以下4個圖形,從左至右依次是正三角形、正方形、正五邊形、正六邊形,它們都是旋轉(zhuǎn)對稱圖形,則它們的最小旋轉(zhuǎn)角依次為
 
,若Γ是一個正n邊形,則其最小旋轉(zhuǎn)角n可以表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,|
PA
|=|
BC
|=a且
PA
=
1
2
PQ
,向
PQ
BC
的夾角θ取何值,
CP
BQ
的值最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,且其側(cè)視圖是一個等邊三角形,求這個幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案