求函數(shù)y=lg(1-
2
cosx)+
1+
2
cosx
的定義域.
考點(diǎn):函數(shù)的定義域及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)函數(shù)y的解析式,列出不等式組
1-
2
cosx>0
1+
2
cosx≥0
,求出解集即可.
解答: 解:∵函數(shù)y=lg(1-
2
cosx)+
1+
2
cosx
,
1-
2
cosx>0
1+
2
cosx≥0
,
cosx<
2
2
cosx≥-
2
2
,
∴-
2
2
≤cosx<
2
2

解得
π
4
+2kπ<x≤
4
+2kπ,
4
+2kπ≤x<
4
+2kπ,其中k∈Z;
∴函數(shù)y的定義域?yàn)閧x|
π
4
+2kπ<x≤
4
+2kπ或
4
+2kπ≤x<
4
+2kπ,k∈Z}.
點(diǎn)評(píng):本題主要考查了余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
y2
16
-
x2
4
=1,點(diǎn)P與雙曲線C的焦點(diǎn)不重合,若點(diǎn)P關(guān)于雙曲線C的上、下焦點(diǎn)的對(duì)稱點(diǎn)分別為A、B,點(diǎn)Q在雙曲線C的上支上,點(diǎn)P關(guān)于點(diǎn)Q的對(duì)稱點(diǎn)為P1,則|P1A|-|P1B|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式|ax+1|≤3 的解集為{x|-2≤x≤1}.則a的值為( 。
A、2
B、1
C、
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列
3
,
7
11
,
15
,
19
,…那么3
11
是這個(gè)數(shù)列的第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x(
1
2x+b
+
1
a
),其中a,b∈R定義域{x|x≠0}且f(2)=
5
3
,求函數(shù)f(x)的解析表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=m(|m|<1),求tanα,cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OA
=(1,0)
,
OC
=(-1,
3
),
CB
=(cosα,sinα),則
OA
OB
的夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=ex與直線y=5-x交點(diǎn)的縱坐標(biāo)在區(qū)間(m,m+1)(m∈z)內(nèi),則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱柱ABC-A1B1C1中,已知AA1=8,AC=AB=5,BC=6,點(diǎn)A1在底面ABC的射影是線段BC的中點(diǎn)O,在側(cè)棱AA1上存在一點(diǎn)E,且OE⊥B1C.
(1)求證:OE⊥面BB1C1C;
(2)求平面A1B1C與平面B1C1C所成銳二面角的余弦值的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案