已知f(n)=cos
4
,求值:f(1)•f(3)•…•f(2n-1).
考點:余弦函數(shù)的圖象
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:f(n)=cos
4
,求出f(1),f(3),f(5),f(7),即可求出:f(1)•f(3)•…•f(2n-1).
解答: 解:當n=1時,f(1)=cos
π
4
=
2
2
,當n=3時,f(3)=-
2
2

當n=5時,f(5)=-
2
2
,當n=7時,f(7)=
2
2
,
∴f(1)•f(3)•…•f(2n-1)=(-1)n-1(
2
2
)n
點評:此題考查了求函數(shù)解析式求函數(shù)值,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)在區(qū)間[a,b]上的最大值是M,最小值是m,若m=M,則f′(x)( 。
A、等于0B、大于0
C、小于0D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f是A到B的映射,A=B=R,f:x→y=2x-1,則B中元素3的原像是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知lg2=a,lg3=b,試用a,b表示log512. 
(2)已知向量
a
,
b
,
c
兩兩所成的角相等,且|
a
|=1,|
b
|=2,|
c
|=3,求|
a
+
b
+
c
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的外接圓的半徑R=
3
3
,|BC|=1,∠BAC為銳角,∠ABC=θ,記f(θ)=
AB
AC
,
(1)求∠BAC 的大小及f(θ)關(guān)于θ的表達式;
(2)求f(θ)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+mx2+nx-2的圖象過點(-1,-6),且函數(shù)g(x)=f′(x)+6x是偶函數(shù)
(1)求m、n的值;
(2)求函數(shù)y=f(x)在區(qū)間[-1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求二次函數(shù)f(x)=-x2+4ax-3在區(qū)間[-2,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
3
=t(t>0).
(1)證該橢圓與橢圓
x2
4
+
y2
3
=1有相同離心率.
(2)求經(jīng)過點(2,-
3
)時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四邊形ABCD中,設(shè)
AB
=
a
,
AD
=
b
,若向量
a
,
b
滿足|
a
|=8,|
b
|=15,且|
a
-
b
|=|
a
+
b
|.
(Ⅰ)判斷四邊形ABCD的形狀;
(Ⅱ)求|
a
+
b
|及|
a
-
b
|.

查看答案和解析>>

同步練習(xí)冊答案