過點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2y2≤4}分兩部分,使得這兩部分的面積之差最大,則該直線的方程為________

 

xy20

【解析】當(dāng)OP與所求直線垂直時(shí)面積之差最大,故所求直線方程為xy20.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷1練習(xí)卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義域?yàn)?/span>D,若存在非零實(shí)數(shù)l使得對(duì)于任意xM(MD),有xlD,且f(xl)≥f(x),則稱函數(shù)f(x)M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:

函數(shù)f(x)xR上的1高調(diào)函數(shù);

函數(shù)f(x)sin 2xR上的π高調(diào)函數(shù);

如果定義域?yàn)?/span>[1,+∞)的函數(shù)f(x)x2[1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞)

其中正確的命題是________(寫出所有正確命題的序號(hào))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練F組練習(xí)卷(解析版) 題型:填空題

平面向量ab滿足|a2b|,且a2b平行于直線y2x1,若b(2,-1),則a________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練E組練習(xí)卷(解析版) 題型:填空題

在正項(xiàng)等比數(shù)列{an}中,Sn是其前n項(xiàng)和.若a11,a2a68,則S8________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練E組練習(xí)卷(解析版) 題型:填空題

設(shè)i為虛數(shù)單位,則復(fù)數(shù)________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練D組練習(xí)卷(解析版) 題型:填空題

把函數(shù)y2sin x,xR的圖象上所有的點(diǎn)向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2(縱坐標(biāo)不變),則所得函數(shù)圖象的解析式是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練C組練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x(0,+∞)時(shí),都有不等式f(x)xf′(x)0成立,若a40.2f(40.2),b(log43)f(log43)cf ,則a,b,c的大小關(guān)系是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練B組練習(xí)卷(解析版) 題型:填空題

已知ab0,給出下列四個(gè)不等式:a2b2;2a2b1;;a3b32a2b.其中一定成立的不等式序號(hào)為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第8天練習(xí)卷(解析版) 題型:填空題

已知平面α,β,γ,直線l,m滿足:αγ,γ∩αmγ∩βl,lm,那么mβ;lαβγ;αβ.

由上述條件可推出的結(jié)論有________(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案