已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對稱點(diǎn),動點(diǎn)M滿足. 問是否存在一個定點(diǎn)T,使得動點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請說明理由.
(Ⅰ);(Ⅱ)存在一個定點(diǎn)且定值為.
解析試題分析:(Ⅰ)依題意由線段F1F2為直徑的圓與直線相切,根據(jù)點(diǎn)到直線的距離公式得,可得c值,再由△AF1F2為正三角形,得a、b、c間關(guān)系,求出a、b的值,即得橢圓方程及離心率;(Ⅱ)假設(shè)存在一個定點(diǎn)T符合題意,先求出點(diǎn)關(guān)于直線的對稱點(diǎn),由題意得,可知動點(diǎn)M的軌跡,從而得解.
試題解析:解:(Ⅰ)設(shè)焦點(diǎn)為,
以線段為直徑的圓與直線相切,,即c=2, 1分
又為正三角形,, 4分
橢圓C的方程為,離心率為. 6分
(Ⅱ)假設(shè)存在一個定點(diǎn)T符合題意,設(shè)動點(diǎn),由點(diǎn)得
點(diǎn)關(guān)于直線的對稱點(diǎn), 7分
由得,
兩邊平方整理得, 10分
即動點(diǎn)M的軌跡是以點(diǎn)為圓心,長為半徑的圓,
存在一個定點(diǎn)且定值為. 12分
考點(diǎn):1、橢圓方程及性質(zhì);2、點(diǎn)到直線的距離公式;3、點(diǎn)關(guān)于直線的對稱點(diǎn)的求法;4、兩點(diǎn)間距離公式;5、圓的軌跡方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓C經(jīng)過點(diǎn)(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長的最小值為1,記該圓的圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)是否存在曲線C與曲線E的一個公共點(diǎn),使它們在該點(diǎn)處有相同的切線?若存在,求出切線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的離心率,是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿足,求(為坐標(biāo)原點(diǎn))面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線交拋物線于兩不同點(diǎn),交軸于點(diǎn),已知,則
是否為定值?若是,求出其值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線C:的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若,求線段中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為,當(dāng)焦點(diǎn)為時(shí),求的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的方程為,其離心率為,經(jīng)過橢圓焦點(diǎn)且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:與橢圓C交于A、B兩點(diǎn),P為橢圓上的點(diǎn),O為坐標(biāo)原點(diǎn),且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過點(diǎn)的直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若以為直徑的圓經(jīng)過原點(diǎn),求直線的方程;
(2)若線段的中垂線交軸于點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓與直線相交于兩點(diǎn).
(1)若橢圓的半焦距,直線與圍成的矩形的面積為8,
求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求證:;
(3)在(2)的條件下,若橢圓的離心率滿足,求橢圓長軸長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形中,分別為四邊的中點(diǎn),且都在坐標(biāo)軸上,設(shè),.
(Ⅰ)求直線與的交點(diǎn)的軌跡的方程;
(Ⅱ)過圓上一點(diǎn)作圓的切線與軌跡交于兩點(diǎn),若,試求出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com