17.欲將方程$\frac{x^2}{4}$+$\frac{y^2}{3}$=1所對(duì)應(yīng)的圖形變成方程x2+y2=1所對(duì)應(yīng)的圖形,需經(jīng)過(guò)伸縮變換φ為( 。
A.$\left\{\begin{array}{l}x'=2x\\ y'=\sqrt{3}y\end{array}\right.$B.$\left\{\begin{array}{l}x'=\frac{1}{2}x\\ y'=\frac{{\sqrt{3}}}{3}y\end{array}\right.$C.$\left\{\begin{array}{l}x'=4x\\ y'=3y\end{array}\right.$D.$\left\{\begin{array}{l}{x′=\frac{1}{4}x}\\{y′=\frac{1}{3}y}\end{array}\right.$

分析 設(shè)伸縮變換φ為$\left\{\begin{array}{l}x'=hx\\ y'=ky\end{array}\right.,(h,k>0)$,代入$\frac{x^2}{4}+\frac{y^2}{3}=1$,化簡(jiǎn)計(jì)算即可得到.

解答 解:設(shè)伸縮變換φ為$\left\{\begin{array}{l}x'=hx\\ y'=ky\end{array}\right.,(h,k>0)$,
則$\left\{\begin{array}{l}x=\frac{x'}{h}\\ y=\frac{y'}{k}\end{array}\right.$,
代入$\frac{x^2}{4}+\frac{y^2}{3}=1$
得$\frac{x^2}{{4{h^2}}}+\frac{y^2}{{3{k^2}}}=1$,
∴$\left\{\begin{array}{l}4{h^2}=1\\ 3{k^2}=1\end{array}\right.⇒\left\{\begin{array}{l}h=\frac{1}{2}\\ k=\frac{{\sqrt{3}}}{3}\end{array}\right.$
故選:B

點(diǎn)評(píng) 本題考查了伸縮變換,關(guān)鍵是對(duì)變換公式的理解與運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x3+x2+ax+b.
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象與直線y=ax恰有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=$\left\{\begin{array}{l}{e^x},x≤1\\-\frac{1}{x-1},x>1\end{array}$方程f(x)-k(x+1)=0有兩個(gè)不等實(shí)根,則實(shí)數(shù)k的取值范圍為(  )
A.(1,$\frac{e}{2}}$)B.(1,$\frac{e}{2}}$]C.(-∞,0)∪(1,$\frac{e}{2}}$]D.(-∞,0)∪(1,$\frac{e}{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.對(duì)兩個(gè)變量的相關(guān)系數(shù)r,下列說(shuō)法中正確的是(  )
A.|r|趨近于0時(shí),沒(méi)有非線性相關(guān)關(guān)系B.|r|越接近于1時(shí),線性相關(guān)程度越強(qiáng)
C.|r|越大,相關(guān)程度越大D.|r|越小,相關(guān)程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+(3a-1)x+1,g(x)=alnx-x+1.
(1)若f(x)在R上不單調(diào),求a的取值范圍.
(2)若當(dāng)x≥1時(shí),g(x)≤0恒成立,求a的取值范圍.
(3)若a≥0,令F(x)=f(x)-g(x),試討論F(x)的導(dǎo)函數(shù)F′(x)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知定義在R上的奇函數(shù)f(x)滿足:當(dāng)x≥0時(shí),f(x)=x-sinx,若不等式f(-4t)>f(2m+mt2)對(duì)任意實(shí)數(shù)t恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)A={1,3,a},B={1,a2},問(wèn)是否存在這樣的實(shí)數(shù)a,使得A∪B={1,a,3},A∩B={1,a}同時(shí)成立?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某幾何體的三視圖如圖所示,正視圖與側(cè)視圖完全相同,則該幾何體的體積為( 。
A.$\frac{192-8π}{3}$B.$16+16\sqrt{5}+4(\sqrt{2}-1)π$C.$\frac{56π}{3}$D.$\frac{64-8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(x)=x+$\frac{a}{x+1}$,x∈[0,+∞).
(1)當(dāng)a=4時(shí),求f(x)的最小值;
(2)當(dāng)a∈(0,1)時(shí),判斷f(x)的單調(diào)性,并求出f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案