【題目】函數(shù)是定義域?yàn)?/span>的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個(gè)判斷:①對(duì)于給定的正整數(shù),存在,使得成立;②當(dāng)a時(shí),對(duì)于給定的正整數(shù),存在,使得成立;③當(dāng)時(shí),函數(shù)既有對(duì)稱軸又有對(duì)稱中心;④當(dāng)時(shí),的值只有0.其中正確判斷的有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

根據(jù)函數(shù)解析式和函數(shù)奇偶性,畫出函數(shù)圖像,依次判斷每個(gè)選項(xiàng):取計(jì)算得到①正確,取,計(jì)算得到②正確,考慮四種情況,分別計(jì)算得到③正確,④錯(cuò)誤,得到答案.

對(duì)于①,要使成立,

,

當(dāng)時(shí),,

,故,故①正確;

對(duì)于②,要使成立,

,

,此時(shí)

,故②正確;

對(duì)于③④,當(dāng)時(shí),為將右移個(gè)單位,此時(shí)周期變?yōu)?/span>,既有對(duì)稱軸也有對(duì)稱中心,值域?yàn)?/span>,

當(dāng)時(shí),為將右移個(gè)單位,此時(shí),

當(dāng)時(shí),為將右移個(gè)單位,此時(shí),故③正確,④錯(cuò)誤;

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1.四邊形是邊長(zhǎng)為10的菱形,其對(duì)角線,現(xiàn)將沿對(duì)角線折起,連接,形成如圖2的四面體,則異面直線所成角的大小為______.在圖2中,設(shè)棱的中點(diǎn)為,的中點(diǎn)為,若四面體的外接球的球心在四面體的內(nèi)部,則線段長(zhǎng)度的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)為何值時(shí),直線是曲線的切線;

(2)若不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面向量,共線的充要條件是(

A.

B.,兩向量中至少有一個(gè)為零向量

C.λR,

D.存在不全為零的實(shí)數(shù)λ1,λ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在圓錐內(nèi)放兩個(gè)大小不同且不相切的球,使得它們分別與圓錐的側(cè)面、底面相切,用與兩球都相切的平面截圓錐的側(cè)面得到截口曲線是橢圓.理由如下:如圖(2),若兩個(gè)球分別與截面相切于點(diǎn),在得到的截口曲線上任取一點(diǎn),過點(diǎn)作圓錐母線,分別與兩球相切于點(diǎn),由球與圓的幾何性質(zhì),得,,所以,且,由橢圓定義知截口曲線是橢圓,切點(diǎn)為焦點(diǎn).這個(gè)結(jié)論在圓柱中也適用,如圖(3),在一個(gè)高為,底面半徑為的圓柱體內(nèi)放球,球與圓柱底面及側(cè)面均相切.若一個(gè)平面與兩個(gè)球均相切,則此平面截圓柱所得的截口曲線也為一個(gè)橢圓,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的一個(gè)頂點(diǎn)坐標(biāo)為A0,﹣1),離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線y=kx1)(k0)與橢圓C交于不同的兩點(diǎn)P,Q,線段PQ的中點(diǎn)為M,點(diǎn)B1,0),求證:點(diǎn)M不在以AB為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式e2xalnxa恒成立,則實(shí)數(shù)a的取值范圍是(

A.[02e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線在y軸上的截距為.

1)求a

2)討論函數(shù)的單調(diào)性;

3)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

(Ⅰ)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.

身高較矮

身高較高

合計(jì)

體重較輕

體重較重

合計(jì)

(Ⅱ)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求(解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);

編號(hào)

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請(qǐng)?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.

參考數(shù)據(jù):

,,

參考公式:,,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

同步練習(xí)冊(cè)答案