分析:(1)由題意可得f′(x)>0,函數(shù)f(x)在(0,+∞)上是增函數(shù).求得f
n(1)>0,f
n(
)<0,再根據(jù)函數(shù)的零點的判定定理,可得要證的結(jié)論成立.
(2)由題意可得f
n+1(x
n)>f
n(x
n)=f
n+1(x
n+1)=0,由 f
n+1(x) 在(0,+∞)上單調(diào)遞增,可得 x
n+1<x
n,故x
n-x
n+p>0.用 f
n(x)的解析式減去f
n+p (x
n+p)的
解析式,變形可得x
n-x
n+p=
n |
|
k=2 |
+
n+p |
|
k=n+1 |
,再進行放大,并裂項求和,可得它小于
,綜上可得要證的結(jié)論成立.
解答:證明:(1)對每個n∈N
+,當x>0時,由函數(shù)f
n(x)=-1+x+
+++(x∈R,n∈N+),可得
f′(x)=1+
+
+…
>0,故函數(shù)f(x)在(0,+∞)上是增函數(shù).
由于f
1(x
1)=0,當n≥2時,f
n(1)=
+
+…+
>0,即f
n(1)>0.
又f
n(
)=-1+
+[
+
+
+…+
]≤-
+
•
n |
|
i=2 |
()i=-
+
×
=-
•
()n-1<0,
根據(jù)函數(shù)的零點的判定定理,可得存在唯一的x
n∈[,1],滿足f
n(x
n)=0.
(2)對于任意p∈N
+,由(1)中x
n構(gòu)成數(shù)列{x
n},當x>0時,∵f
n+1(x)=f
n(x)+
>f
n(x),
∴f
n+1(x
n)>f
n(x
n)=f
n+1(x
n+1)=0.
由 f
n+1(x) 在(0,+∞)上單調(diào)遞增,可得 x
n+1<x
n,即 x
n-x
n+1>0,故數(shù)列{x
n}為減數(shù)列,即對任意的 n、p∈N
+,x
n-x
n+p>0.
由于 f
n(x)=-1+x
n+
+
+…+
=0 ①,
f
n+p (x
n+p)=-1+x
n+p+
+
+…+
+[
+
+…+
]②,
用①減去②并移項,利用 0<x
n+p≤1,可得
x
n-x
n+p=
n |
|
k=2 |
+
n+p |
|
k=n+1 |
≤
n+p |
|
k=n+1 |
≤
n+p |
|
k=n+1 |
<
n+p |
|
k=n+1 |
=
-<
.
綜上可得,對于任意p∈N
+,由(1)中x
n構(gòu)成數(shù)列{x
n}滿足0<x
n-x
n+p<
.
點評:本題主要考查函數(shù)的導數(shù)及應(yīng)用,函數(shù)的零點的判定,等比數(shù)列求和以及用放縮法證明不等式,還考查推理以及運算求解能力,屬于難題.