16.等比數(shù)列{an}的各項均為正數(shù),且a4=a2•a5,3a5+2a4=1,則Tn=a1a2…an的最大值為27.

分析 由a4=a2•a5,得${a}_{4}{q}^{-1}=1$即a4=q,再結(jié)合已知條件求出等比數(shù)列的通項公式,進一步求出Tn=a1a2…an的最大值即可.

解答 解:由a4=a2•a5,得${a}_{4}{q}^{-1}=1$即a4=q.
∴3${{a}_{4}}^{2}+2{a}_{4}=1$即a4=q=$\frac{1}{3}$.
∴${a}_{n}=(\frac{1}{3})•(\frac{1}{3})^{n-4}=(\frac{1}{3})^{n-3}$.
則Tn=a1a2…an的最大值為:$(\frac{1}{3})^{-2}×(\frac{1}{3})^{-1}×(\frac{1}{3})^{0}=27$.
故答案為:27.

點評 本題考查了等比數(shù)列的通項公式,考查了分析問題的能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,D為棱AA1的中點,AB=AC=AD=1,
(Ⅰ) 求證:平面DBC1⊥平面BCC1B1
(Ⅱ) 若直線A1B與B1C1所成角為75°,求二面角B-AA1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式$\frac{3x}{2x-1}≤2$的解集為$({-∞,\frac{1}{2}})∪[{2,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,$\sqrt{3}$sinB-cosB=1,a=2.
(1)求角B的大。
(2)若b2=ac,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若一個集合中含有n個元素,則稱該集合為“n元集合”,已知集合A=$\{-2,\frac{1}{2},3,4\}$,則其“2元子集”的個數(shù)為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$y=\sqrt{-{x^2}-2x+8}$的定義域為A,值域為B,則A∪B=[-4,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求證:
(1)a2+b2+c2≥ab+bc+ac
(2)(ac+bd)2≤(a2+b2)(c2+d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知z是純虛數(shù),且(2+i)z=1+ai3(i是虛數(shù)單位,a∈R),則|a+z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點到右頂點的距離為2,左焦點為F(-$\sqrt{2}$,0),過點D(0,3)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的標準方程及k的取值范圍;
(2)在y軸上是否存在定點E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案