函數(shù)y=3 x2-3x+2,x∈[-1,2]的值域是(  )
A、R
B、[
1
43
,729]
C、[9,243]
D、[3,+∞)
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由二次函數(shù)值域的求法求出t=x2-3x+2的范圍,然后結(jié)合指數(shù)函數(shù)的單調(diào)性得答案.
解答: 解:令t=x2-3x+2,
∵x∈[-1,2],
∴t=x2-3x+2=(x-
3
2
)2-
1
4
∈[-
1
4
,6]

y=3t(-
1
4
≤t≤6)
[
1
43
,729]

∴函數(shù)y=3 x2-3x+2,x∈[-1,2]的值域是[
1
43
,729]

故選:B.
點評:本題考查了復(fù)合函數(shù)的單調(diào)性,考查了二次函數(shù)和指數(shù)函數(shù)值域的求法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角A是△ABC的一個內(nèi)角,a,b,c是三角形中各角的對應(yīng)邊,若sin2A-cos2A=
1
2
,則b+c與2a的大小關(guān)系為
 
.(填<或>或≤或≥或=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x,x>0
x+1,x≤0
,若f(a)=-2,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將二進制數(shù)1101化為十進制數(shù)為( 。
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的二次函數(shù)f(x)=-x2+bx+c對一切實數(shù)x都有:f(2+x)=f(2-x)恒成立.
(1)求實數(shù)b的值;
(2)當a∈R時,判斷f(
5
4
)與f(-a2-a+1)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,3,a},B={1,2}且A?B,則a的值為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex-e-x,g(x)=ex+e-x,其中e=2.718….設(shè)f(x)•f(y)=4,g(x)•g(y)=8,求
g(x+y)
f(x+y)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是兩條直線,α,β是兩個平面,則下列說法中正確的是( 。
A、若a∥b,b∥α,則a∥α
B、若a⊥b,b⊥α,則a⊥α
C、若α∥β,a?α,則a∥β
D、若α⊥β,a?α,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知符號函數(shù)sgnx=
1,x>0
0,x=0
-1,x<0
,則不等式(x2-2)•sgnx>1的解集是(  )
A、(-1,1)∪(
3
,+∞)
B、(-1,0)∪(
3
,+∞)
C、(-∞,
3
]∪(
3
,+∞)
D、(-∞,-
3
)∪(-1,1)∪(
3
,+∞)

查看答案和解析>>

同步練習(xí)冊答案