如圖,在ABCD中,AB⊥BD,沿BD將△ABD折起,使平面ABD⊥平面BCD,連結(jié)AC.在四面體A-BCD的四個(gè)面中,互相垂直的平面有( 。
A、1對(duì)B、2對(duì)C、3對(duì)D、4對(duì)
考點(diǎn):平面與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:運(yùn)用2個(gè)圖形得出,AB⊥平面BCD,CD⊥平面ABD,根據(jù)面面垂直的判定定理得出:面ABC⊥平面BCD,面ACD⊥面ABD,確定答案.
解答: 解:
∵在ABCD中,AB⊥BD,沿BD將△ABD折起,使平面ABD⊥平面BCD,
∴AB⊥平面BCD,CD⊥平面ABD,
∴根據(jù)面面垂直的判定定理得出:面ABC⊥平面BCD,面ACD⊥面ABD,
∴在四面體A-BCD的四個(gè)面中,互相垂直的平面有3對(duì),
故選:C
點(diǎn)評(píng):本題考查了折疊問題,運(yùn)用原來的幾何體中的直線平面的為關(guān)系判斷,關(guān)鍵是確定需要的直線,平面.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線4x2-y2=64上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離為10,那么它到另一個(gè)焦點(diǎn)的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F1(-1,0),F(xiàn)2(1,0),曲線E是以原點(diǎn)為頂點(diǎn)、F2為焦點(diǎn)且離心率為1的圓錐曲線,橢圓C與曲線E的交點(diǎn)為A,B,且點(diǎn)A到點(diǎn)F1,F(xiàn)2的距離之和為4.
(1)求橢圓C和曲線E的方程;
(2)在橢圓C和曲線E上是否存在這樣的點(diǎn)P,使得△PAB的面積為
8
6
9
?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)若平行于x軸的直線分別與橢圓C和曲線E交于M(x1,y1),N(x2,y2)兩點(diǎn),且x1>x2,求△MNF2的周長(zhǎng)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}得前n項(xiàng)和為Sn,利用倒序相加法的求和辦法,可將Sn表示成首項(xiàng)a1,末項(xiàng)an與項(xiàng)數(shù)的一個(gè)關(guān)系式,即Sn=
(a1+an)n
2
;類似地,記等比數(shù)列{bn}的前n項(xiàng)積為Tn,bn>0(n∈N*),類比等差數(shù)列的求和方法,可將Tn表示為首項(xiàng)b1,末項(xiàng)bn與項(xiàng)數(shù)的一個(gè)關(guān)系式,即公式Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x
(其中e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)g(x)=x2f(x)-mx,其中m∈R,求g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)正方體的平面展開圖,則在正方體中,①CN與BE是異面直線;②平面DEM∥平面ACF;③DE⊥BM; ④AF與BM所成角為60°;⑤BN⊥平面AFC,在以上的五個(gè)結(jié)論中,正確的是
 
(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,2},B={3,4,5},從A中任意取出一個(gè)元素a,從B 中任意取出一個(gè)元素b,
(1)求點(diǎn)(a,b)落在圓(x-1)2+y2=20內(nèi)的概率.
(2)求點(diǎn)(a,b)落在平面區(qū)域
x≥0
x+y-6≤0
y≥0
內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三內(nèi)角A、B、C的對(duì)邊分別是a,b,c,∠BAC=105°b=2,c=
2

(1)求sinA.
(2)若
BE
BC
(λ>0),∠BAE=45°,試求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a4=7,a5=b2,且存在常數(shù)a,β使得對(duì)每一個(gè)正數(shù)n都有an=1ogabn+β,則a+β=(  )
A、2B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案