把函數(shù)y=cosx的圖象上的所有點的橫坐標縮小到原來的一半(縱坐標不變),然后把圖象向左平移
π
8
個單位,則所得圖形對應的函數(shù)解析式為( 。
A、y=cos(
1
2
x+
π
4
B、y=cos(2x+
π
4
C、y=cos(
1
2
x+
π
8
)
D、y=cos(
1
2
x+
π
2
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質
分析:利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律即可求得答案.
解答: 解:函數(shù)y=cosx的圖象上的所有點的橫坐標縮小到原來的一半(縱坐標不變),得到y(tǒng)=cos2x,
把得到的函數(shù)的圖象向左平移
π
8
個單位,得到的圖形對應的函數(shù)解析式為y=cos2(x+
π
8
)=cos(2x+
π
4
),
故選:B.
點評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=x2+ln(x+a),其中a為常數(shù).
(1)討論函數(shù)g(x)的單調性;
(2)若g(x)存在兩個極值點x1,x2,求證:無論實數(shù)a取什么值都有
g(x1)+g(x2)
2
>g(
x1+x2
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠計劃生產(chǎn)甲、乙兩種產(chǎn)品,這兩種產(chǎn)品都需要兩種原料.生產(chǎn)甲產(chǎn)品1工時需要A種原料3kg,B種原料1kg;生產(chǎn)乙產(chǎn)品1工時需要A種原料2kg,B種原料2kg.現(xiàn)有A種原料1200kg,B種原料800kg.如果生產(chǎn)甲產(chǎn)品每工時的平均利潤是30元,生產(chǎn)乙產(chǎn)品每工時的平均利潤是40元,問甲、乙兩種產(chǎn)品各生產(chǎn)多少工時能使利潤的總額最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為 ( 。
A、直角三角形B、銳角三角形
C、鈍角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐的直觀圖及其俯視圖與側視圖如圖,俯視圖是邊長為2的正三角形,側視圖是有一直角邊為2的直角三角形,則該三棱錐的正視圖面積為( 。
A、
2
B、2
C、4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1-2x
+
1
x+3
的定義域為( 。
A、(-3,0]
B、(-3,1]
C、(-∞,-3)∪(-3,0]
D、(-∞,-3)∪(-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-2,0),B(2,0),∠APB=135°.
(1)求點P的軌跡方程;
(2)點C(2,4),在(1)的軌跡上求一點M,使得|CM|最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4個人排成一排,甲不能站在兩邊,則不同的排法種數(shù)有( 。┓N.
A、12B、16C、8D、20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,1),
b
=(2,3)則|
a
+
b
|=
 

查看答案和解析>>

同步練習冊答案