閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
------①
------②
由①+② 得------③
令 有
代入③得 .
(Ⅰ)類(lèi)比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
;
(Ⅱ)若的三個(gè)內(nèi)角滿(mǎn)足,試判斷的形狀.
(1)根據(jù)兩角和差的余弦公式可以得到結(jié)論,
(2)為直角三角形
【解析】
試題分析:解:解法一:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080112000491562913/SYS201308011200378842577375_DA.files/image002.png">, ①
, ② 2分
①-② 得. ③ 3分
令有,
代入③得. 6分
(Ⅱ)由二倍角公式,可化為
, 8分
即. 9分
設(shè)的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為,
由正弦定理可得 11分
根據(jù)勾股定理的逆定理知為直角三角形. 12分
解法二:(Ⅰ)同解法一.
(Ⅱ)利用(Ⅰ)中的結(jié)論和二倍角公式, 可化為
, 8分
因?yàn)锳,B,C為的內(nèi)角,所以,
所以.
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080112000491562913/SYS201308011200378842577375_DA.files/image016.png">,所以,
所以.
從而. 10分
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080112000491562913/SYS201308011200378842577375_DA.files/image020.png">,所以,即.
所以為直角三角形. 12分
考點(diǎn):解三角形,兩角和差公式
點(diǎn)評(píng):主要是考查了運(yùn)用兩角和差的公式推理論證表達(dá)式以及運(yùn)用二倍角公式來(lái)得到三角形定形,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇姜堰市高二第二學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
------①
------②
由①+② 得------③
令 有
代入③得 .
(1) 類(lèi)比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:
;
(2)若的三個(gè)內(nèi)角滿(mǎn)足,直接利用閱讀材料及(1)中的結(jié)論試判斷的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com