分析 (1)利用拋物線C:y2=2px(p>0)的焦點(diǎn)F(1,0),可得拋物線C的方程;
(2)分類討論,設(shè)出直線的方程,與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合斜率公式,可求直線方程,即可得出結(jié)論.
解答 (1)解:因?yàn)閽佄锞y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),
所以$\frac{p}{2}$=1,所以p=2.
所以拋物線C的方程為y2=4x.
(2)證明:①當(dāng)直線AB的斜率不存在時(shí),設(shè)A($\frac{{t}^{2}}{4}$,t),B($\frac{{t}^{2}}{4}$,-t),
因?yàn)橹本OA,OB的斜率之積為-$\frac{1}{3}$,所以$\frac{t}{\frac{{t}^{2}}{4}}•\frac{-t}{\frac{{t}^{2}}{4}}$=-$\frac{1}{3}$,化簡(jiǎn)得t2=48.
所以(12,t),B(12,-t),此時(shí)直線AB的方程為x=12.----------------(7分)
②當(dāng)直線AB的斜率存在時(shí),設(shè)直線的方程為y=kx+b,A(xA,yA),B(xB,yB)
聯(lián)立方程,化簡(jiǎn)得ky2-4y+4b=0.------------------(9分)
根據(jù)韋達(dá)定理得到y(tǒng)AyB=$\frac{4b}{k}$,
因?yàn)橹本OA,OB的斜率之積為-$\frac{1}{3}$,所以得到xAxB+3yAyB=0.--------------------(11分)
得到$\frac{{{y}_{A}}^{2}}{4}•\frac{{{y}_{B}}^{2}}{4}$+2yAyB=0,
化簡(jiǎn)得到y(tǒng)AyB=0(舍)或yAyB=-48.--------------------(12分)
又因?yàn)閥AyB=$\frac{4b}{k}$=-48,b=-12k,
所以y=kx-12k,即y=k(x-12).
綜上所述,直線AB過(guò)定點(diǎn)(12,0).
點(diǎn)評(píng) 本題考查拋物線的方程,考查直線與拋物線的位置關(guān)系,考查分類討論的數(shù)學(xué)思想,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com