已知{an}是等比數(shù)列,(a6+a10)(a4+a8)=49,則a5+a9等于( 。
A、7B、±7C、14D、不確定
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等比數(shù)列{an}的公比為q,利用等比數(shù)列的通項(xiàng)公式用“a5+a9”表示:(a6+a10)(a4+a8)=49,再求值即可.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,且q≠0,
∵(a6+a10)(a4+a8)=49,
∴(a5•q+a9•q)(a5
1
q
+a9
1
q
)=49,
解得(a2+a9)2=49,
則a5+a9=±7,
故選:B.
點(diǎn)評:本題考查等比數(shù)列的通項(xiàng)公式的靈活應(yīng)用,以及整體代換思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在2014年巴西世界杯足球賽前夕,某體育用品店購進(jìn)一批單價(jià)為40元的球服,如果按單價(jià)60元銷售,那么一個(gè)月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會導(dǎo)致銷售量的減少,即銷售單價(jià)每提高5元,銷售量相應(yīng)減少20套,設(shè)銷售單價(jià)為x(x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),且銷售額為14000元?
(3)當(dāng)銷售單價(jià)為多少元時(shí),才能在一個(gè)月內(nèi)獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=-x2+2x,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xex的導(dǎo)函數(shù)f′(x)等于( 。
A、(1+x)ex
B、xex
C、ex
D、2xex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=cos(ωx-
π
2
)(ω>0)
在區(qū)間[0,1]內(nèi)至少出現(xiàn)2次極值,則ω的最小值為( 。
A、
π
2
B、
3
2
π
C、
2
3
π
D、
5
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+e-x,其中e為自然對數(shù)的底數(shù).
(1)若?x∈(0,+∞),mf(x)≤e-x+m-1,求實(shí)數(shù)m的取值范圍;
(2)已知正數(shù)a滿足:?x∈[1,+∞),f(x0)<a(-x03+3x0).試比較ea-1與ae-1大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(a2-a-2)+(|a-1|-1)i(a∈R)不是純虛數(shù),則有(  )
A、a≠0B、a≠2
C、a≠0且a≠2D、a≠-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等式|x-2|>1的解集與關(guān)于x的不等式x2-ax+b>0的解集相等.
(I)求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù)f(x)=a
x-3
+b
4-x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的一段圖象如下,則f(x)的解析式為( 。
A、f(x)=2sin(2x+
3
)
B、f(x)=2sin(2x-
π
3
)
C、f(x)=2sin(2x+
π
3
)
D、f(x)=2sin(2x-
π
6
)

查看答案和解析>>

同步練習(xí)冊答案