等比數(shù)列{an}中,已知a1•a2•a3=1,a2+a3+a4=
74
,則a1
2
2
分析:設(shè)出等比數(shù)列的公比,由題意列方程組進(jìn)行求解.
解答:解:設(shè)等比數(shù)列的公比為q,由a1•a2•a3=1,a2+a3+a4=
7
4
,得
a13q3=1
a1q(1+q+q2)=
7
4
,解得q=
1
2
q=-
3
2
(舍),所以a1=2.
故答案為2.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式,考查了方程組的解法,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對(duì)任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項(xiàng)所組成的新數(shù)列的前n項(xiàng)和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,已知對(duì)n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案