1.把函數(shù)y=cos2x+$\sqrt{3}$sin2x的圖象向左平移m(其中m>0)個單位,所得圖象關(guān)于y軸對稱,則m的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

分析 根據(jù)兩角和的正弦公式化簡函數(shù)的解析式,利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得所得圖象對應(yīng)的函數(shù)解析式,再利用所得圖象關(guān)于y軸對稱求出φ的值,從而求得m的最小值.

解答 解:把函數(shù)y=cos2x+$\sqrt{3}$sin2x=2sin(2x+$\frac{π}{6}$)的圖象向左平移m(其中m>0)個單位,可得y=2sin[2(x+m)+$\frac{π}{6}$]=2sin(2x+2m+$\frac{π}{6}$)的圖象,
所得圖象關(guān)于y軸對稱,則2m+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,即 m=kπ+$\frac{π}{6}$,故正數(shù)m的最小值是$\frac{π}{6}$,
故選:B.

點(diǎn)評 本題主要考查兩角和的正弦公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的奇偶性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)P是雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)在第一象限的某點(diǎn),F(xiàn)1、F2為雙曲線的焦點(diǎn).若P在以F1F2為直徑的圓上且滿足|PF1|=3|PF2|,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)常數(shù)c≠0,函數(shù)f(x)=$\left\{\begin{array}{l}{cx+1,x∈(-∞,c)}\\{{2}^{-\frac{x}{{c}^{2}}}+1,x∈[c,+∞)}\end{array}\right.$,若f(c2)=$\frac{9}{8}$
(1)求常數(shù)c的值;
(2)解不等式f(x)<$\frac{\sqrt{2}}{8}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知y=f(x)為R上可導(dǎo)函數(shù),則“f′(0)=0“是“x=0是y=f(x)極值點(diǎn)”的必要不充分條件(填“充分不必要條件”或“必要不充分條件”或“充要條件”或“既不充分也不必要條件”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下面給出了四個類比推理:
(1)由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
(2)“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”
(3)“a,b為實(shí)數(shù),若a2+b2=0則a=b=0”類比推出“z1,z2為復(fù)數(shù),若z${\;}_{1}^{2}$+z${\;}_{2}^{2}$=0則z1=z2=0”;
(4)“在平面內(nèi),過不在同一條直線上的三個點(diǎn)有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點(diǎn)有且只有一個球”
上述四個推理中,結(jié)論正確的序號是( 。
A.(2)(4)B.(1)(2)(4)C.(2)(3)D.(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-mx+m,m、x∈R.
(1)若關(guān)于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實(shí)x1,x2數(shù)滿足x1<x2,且f(x1)≠f(x2),證明:方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]至少有一個實(shí)根x0∈(x1,x2);
(3)設(shè)F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合{a,b,c}={1,2,3},①a≠2;②a=3;③b=1;④c=3.若①②③④中有且僅有一個是正確的,則a-b-c的值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a,b∈R,i是虛數(shù)單位,若a+i與3-bi互為共扼復(fù)數(shù),則(a-bi)2=(  )
A.10+6iB.8+6iC.8-6iD.10-6i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線L的方程為-Ax-By+C=0,若直線L過原點(diǎn)和一、三象限,則( 。
A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0D.C=0,AB>0

查看答案和解析>>

同步練習(xí)冊答案