在正方體ABCD-A1B1C1D!中,M、N、P、Q分別是AB、AA1、C1D1、CC1的中點(diǎn),給出以下四個結(jié)論:
①AC1⊥MN; ②AC1∥平面MNPQ; ③AC1與PM相交;④NC1與PM異面,
其中正確結(jié)論的序號是
 
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:在正方體ABCD-A1B1C1D1中,∴A1D⊥AD1,
∵CD⊥面AA1D1D,AD1?面AA1D1D,
∴CD⊥AD1
∴AD1⊥面A1CD,∴A1C⊥AD1
∵M(jìn),N分別是AA1,A1D1的中點(diǎn),∴AD1∥MN,即A1C⊥MN,故①正確;
由于M,N,P,Q分別是AA1,A1D1,CC1,BC的中點(diǎn),
則A1C與PM相交,故②不正確,③正確;
∵N∉面ACC1A1,而M,P,C∈面ACC1A1,∴NC與PM異面,故④正確;
故答案為:①③④.
點(diǎn)評:本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0,且滿足4x+y=xy,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=
3
cos2x-sin2x的圖象向左平移t(t>0)個單位,所得圖象對應(yīng)的函數(shù)為奇函數(shù),則t的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(kx2-2x+1)值域為R,則k的取值范圍是( 。
A、(0,+∞)
B、(1,+∞)
C、(0,2)
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題
(1)“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
(2)“x=1”是“x2-3x+2=0”的充分不必要條件;
(3)若p∧q為假命題,則p、q均為假命題;
(4)若“p∨q”為假命題,則“¬p∧¬q”為真命題.
說法正確的有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+2ny-1=0(mn>0)上,則
1
m
+
1
n
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的三個頂點(diǎn)A(-3,-1),B(2,-1),C(5,3),求頂點(diǎn)D的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:{x|
x+2≥0
x-10≤0
},q:{x|1-m≤x≤1+m,m>0},若q是p的必要非充分條件,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)-
2
3
+(1.5)-2
+(
2
×
43
)4

(2)lg25+lg2×lg500-
1
2
lg
1
25
-log29×log32.

查看答案和解析>>

同步練習(xí)冊答案