已知直線l:y=kx+1,圓C:(x-1)2+(y+1)2=12.
(1)試證明:不論k為何實(shí)數(shù),直線l和圓C總有兩個(gè)交點(diǎn);
(2)求直線l被圓C截得的最短弦長(zhǎng).
分析:(1)聯(lián)立直線l與圓C方程,消去y得到關(guān)于x的一元二次方程,根據(jù)根的判別式恒大于0,得到不論k為何實(shí)數(shù),直線l和圓C總有兩個(gè)交點(diǎn);
(2)設(shè)直線與圓相交于A(x1,y1),B(x2,y2),表示出直線l被圓C截得的弦長(zhǎng),設(shè)t=
4k+3
1+k2
,討論出t的最大值,即可確定出弦長(zhǎng)的最小值.
解答:解:(1)由
y=kx+1
(x-1)2+(y+1)2=12
,消去y得到(k2+1)x2-(2-4k)x-7=0,
∵△=(2-4k)2+28k2+28>0,
∴不論k為何實(shí)數(shù),直線l和圓C總有兩個(gè)交點(diǎn);
(2)設(shè)直線與圓相交于A(x1,y1),B(x2,y2),
則直線l被圓C截得的弦長(zhǎng)|AB|=
1+k2
|x1-x2|=2
8-4k+11k2
1+k2
=2
11-
4k+3
1+k2
,
令t=
4k+3
1+k2
,則有tk2-4k+(t-3)=0,
當(dāng)t=0時(shí),k=-
3
4

當(dāng)t≠0時(shí),由k∈R,得到△=16-4t(t-3)≥0,
解得:-1≤t≤4,且t≠0,
則t=
4k+3
1+k2
的最大值為4,此時(shí)|AB|最小值為2
7

則直線l被圓C截得的最短弦長(zhǎng)為2
7
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:直線與圓的交點(diǎn),兩點(diǎn)間的距離公式,根的判別式,以及一元二次方程的性質(zhì),是一道綜合性較強(qiáng)的試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過(guò)拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k);若P與M重合時(shí),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx+1與橢圓
x2
2
+y2=1交于M、N兩點(diǎn),且|MN|=
4
2
3
.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知圓M:(x+1)2+y2=8及定點(diǎn)N(1,0),點(diǎn)P是圓M上一動(dòng)點(diǎn),點(diǎn)Q為PN的中點(diǎn),PM上一點(diǎn)G滿足
GQ
NP
=0

(1)求點(diǎn)G的軌跡C的方程;
(2)已知直線l:y=kx+m與曲線C交于A、B兩點(diǎn),E(0,1),是否存在直線l,使得點(diǎn)N恰為△ABE的垂心?若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx+b是橢圓C:
x24
+y2=1
的一條切線,F(xiàn)1,F(xiàn)2為左右焦點(diǎn).
(1)過(guò)F1,F(xiàn)2作l的垂線,垂足分別為M,N,求|F1M|•|F2M|的值;
(2)若直線l與x軸、y軸分別交于A,B兩點(diǎn),求|AB|的最小值,并求此時(shí)直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx-1與雙曲線C:x2-y2=4
(1)如果l與C只有一個(gè)公共點(diǎn),求k的值;
(2)如果l與C的左右兩支分別相交于A(x1,y1),B(x2,y2)兩點(diǎn),且|x1-x2|=2
5
,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案