【題目】如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.
(1)求證:;
(2)求直線與平面所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】設函數,.
(1)當時,求函數在點處的切線方程;
(2)是函數的極值點,求函數的單調區(qū)間;
(3)在(2)的條件下,,若,,使不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為準確把握市場規(guī)律,某公司對其所屬商品售價進行市場調查和模型分析,發(fā)現該商品一年內每件的售價按月近似呈的模型波動(為月份),已知3月份每件售價達到最高90元,直到7月份每件售價變?yōu)樽畹?/span>50元.則根據模型可知在10月份每件售價約為_____.(結果保留整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】棉花的纖維長度是評價棉花質量的重要指標,某農科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取20根棉花纖維進行統(tǒng)計,結果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)
纖維長度 | |||||
甲地(根數) | 3 | 4 | 4 | 5 | 4 |
乙地(根數) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計數據,填寫下面列聯表,并判斷能否在犯錯誤概率不超過0.025的前提下認為“纖維長度與土壤環(huán)境有關系”.
甲地 | 乙地 | 總計 | |
長纖維 | |||
短纖維 | |||
總計 |
附:(1);
(2)臨界值表;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數為,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若存在區(qū)間,使得,則稱函數為“可等域函數”,區(qū)間為函數的一個“可等域區(qū)間”.給出下列4個函數:
①;②; ③; ④.
其中存在唯一“可等域區(qū)間”的“可等域函數”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為.
(Ⅰ)求曲線的參數方程;
(Ⅱ)過原點且關于軸對稱的兩條直線與分別交曲線于、和、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產某種電子產品,每件產品不合格的概率均為,現工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每 件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢 驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次 數為.
(1)求的分布列及其期望;
(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數越少;
(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com