等差數(shù)列{an}的各項均為正數(shù),a1=3,前n項和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.
(1)求an與bn;
(2)若不等式
1
S1
+
1
S2
+…+
1
Sn
m-2009
4
對n∈N*成立,求最小正整數(shù)m的值.
分析:(1)設(shè){an}的公差為d,{bn}的公比為q,結(jié)合b2S2=64,b3S3=960,求出公差與公比,即可求an與bn
(2)利用裂項法求和,從而可得不等式,即可求最小正整數(shù)m的值.
解答:解:(1)設(shè){an}的公差為d,{bn}的公比為q,則d為正整數(shù),an=3+(n-1)d,bn=qn-1
依題意,b2S2=64,b3S3=960,∴
S3b3=(9+3d)q2=960
S2b2=(6+d)q=64

解得
d=2
q=8
,或
d=-
6
5
q=
40
3
(舍去)     
an=3+2(n-1)=2n+1,bn=8n-1
(2)Sn=3+5+…+(2n+1)=n(n+2)
1
S1
+
1
S2
+…+
1
Sn
=
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
3
4
-
2n+3
2(n+1)(n+2)
3
4
m-2009
4

∴m≥2012,所以所求m的最小正整數(shù)是2012.
點評:本題考查數(shù)列的通項與求和,考查數(shù)列與不等式的綜合,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,當(dāng)a1,d變化時,若8(a4+a6+a8)+(a10+a12+a14+a16)是一個定值,那么下列各數(shù)中也為定值的是(  )
A、S7B、S8C、S13D、S15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•咸安區(qū)模擬)等差數(shù)列{an}的公差為d,前n項的和為Sn,當(dāng)首項a1和d變化時,a2+a8+a11是一個定值,則下列各數(shù)中也為定值的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和記為Sn,若a2+a6+a10為一個確定的常數(shù),則下列各數(shù)中可以用這個常數(shù)表示的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn是等差數(shù)列{an}的前n項和,若a2+a4+a15是一個確定的常數(shù),則在下列各數(shù)中也是確定常數(shù)的項是
(填上你認為正確的值的序號)
①S7②S8③S13④S16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,若a3+a9+a21的值為常數(shù),則下列各數(shù)中也是常數(shù)的是( 。

查看答案和解析>>

同步練習(xí)冊答案