18.已知隨機變量X~B(n,$\frac{1}{3}$),若D(x)=$\frac{4}{3}$,則P(X=2)=( 。
A.$\frac{13}{15}$B.$\frac{2}{81}$C.$\frac{13}{243}$D.$\frac{80}{243}$

分析 X~B(n,$\frac{1}{3}$),若D(x)=$\frac{4}{3}$,則n$•\frac{1}{3}•\frac{2}{3}$=$\frac{4}{3}$,求出n,表示6次獨立重復(fù)試驗,每次實驗成功概率為$\frac{1}{3}$,P(X=2)表示6次試驗中成功兩次的概率.

解答 解:由題意,X~B(n,$\frac{1}{3}$),若D(x)=$\frac{4}{3}$,則n$•\frac{1}{3}•\frac{2}{3}$=$\frac{4}{3}$,∴n=6.
P(X=2)=${C}_{6}^{2}•(\frac{1}{3})^{2}(\frac{2}{3})^{4}$=$\frac{80}{243}$.
故選D.

點評 本題考查獨立重復(fù)試驗中事件的概率及二項分布知識,屬基本題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知{an}是等比數(shù)列,a5=$\frac{1}{2},4{a_3}+{a_7}$=2,則a7=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在透明塑料制成的長方體ABCD-A1B1C1D1容器內(nèi)灌進一些水,將容器底面一邊BC固定于地面上,再將容器傾斜,隨著傾斜度的不同,有下列四個說法:
①水的部分始終呈棱柱狀;
②水面四邊形EFGH的面積不改變;
③棱A1D1始終與水面EFGH平行;
④當(dāng)E∈AA1時,AE+BF是定值.其中正確說法的是( 。
A.②③④B.①②④C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不必要也不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求分別滿足下列條件的橢圓C的標(biāo)準(zhǔn)方程.
(1)過點(3,-2)且與橢圓4x2+9y2=36有相同焦點.
( 2 )中心為原點,焦點在x軸上,離心率為$\frac{{\sqrt{2}}}{2}$,過F1的直線交橢圓C于A、B兩點,且△ABF2的周長為16,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)的定義域為[-2,2],在同一坐標(biāo)系下,函數(shù)y=f(x)的圖象與直線x=1的交點個數(shù)為( 。
A.0個B.1個C.2個D.0個或者2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影為BC的中點,D是B1C1的中點.
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求四棱錐A1-BB1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.現(xiàn)有一半球形原料,若通過切削將該原料加工成一正方體工件,則所得工件體積與原料體積之比的最大值為( 。
A.$\frac{\sqrt{6}}{3π}$B.$\frac{\sqrt{6}}{6π}$C.$\frac{3\sqrt{2}}{8π}$D.$\frac{3\sqrt{2}}{4π}$

查看答案和解析>>

同步練習(xí)冊答案