【題目】已知函數(shù),函數(shù),,.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,對恒成立,求的取值范圍.(為自然對數(shù)的底數(shù))
【答案】(1)見解析;(2).
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),對分、兩種情況討論,利用導(dǎo)數(shù)可求得函數(shù)的單調(diào)區(qū)間;
(2)由題意可知對恒成立,取可得,由可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值,由此可求得實數(shù)的取值范圍.
(1),,則,
當(dāng)時,,則函數(shù)在上單調(diào)遞增;
當(dāng)時,令,可得;令,可得.
此時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
綜上所述,當(dāng)時,函數(shù)在上單調(diào)遞增;
當(dāng)時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
(2)由可得對恒成立,
取,可得,
因,則,,
則,,,
設(shè),,
令,可得或.
當(dāng)或時,;當(dāng)時,.
所以,函數(shù)在上遞減,在上遞增,在上遞減.
所以,所以.
因此,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB⊥BC,∠ACB=60°,D為AC中點,△ABD沿BD翻折過程中,直線AB與直線BC所成的最大角、最小角分別記為α1,β1,直線AD與直線BC所成最大角、最小角分別記為α2,β2,則有( )
A.α1<α2,β1≤β2B.α1<α2,β1>β2
C.α1≥α2,β1≤β2D.α1≥α2,β1>β2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是一個首項為2,公比為q(q1)的等比數(shù)列,且3a1,2a2,a3成等差數(shù)列.
(1)求{an}的通項公式;
(2)已知數(shù)列{bn}的前n項和為Sn,b1=1,且1(n≥2),求數(shù)列{anbn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F是橢圓的左焦點,過點F且斜率為正的直線與E相交于A、B兩點,過點A、B分別作直線AM和BN滿足AM⊥l,BN⊥l,且直線AM、BN分別與x軸相交于M和N.試求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對于函數(shù)有下述四個結(jié)論:①函數(shù)在其定義域上為增函數(shù);②對于任意的,,都有成立;③有且僅有兩個零點;④若,則在點處的切線與在點處的切線為同一直線.其中所有正確的結(jié)論有( )
A.①②③B.①③C.②③④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓:的離心率為,為橢圓上位于第一象限上的點,為橢圓的上頂點,直線與軸相交于點,,的面積為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓有且只有一個公共點,設(shè)橢圓的兩焦點到直線的距離分別是,,試問是否為定值?若是,求出其值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com