14.已知△ABC中,a,b,c分別是角A,B,C所對的邊,且a=2,b=$\sqrt{2},B=\frac{π}{6}$,則角A=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{3π}{4}$或$\frac{π}{4}$

分析 由題意和正弦定理求出sinA,由條件、邊角關(guān)系、特殊角的三角函數(shù)值求出角A即可.

解答 解:∵a=2,b=$\sqrt{2}$,$B=\frac{π}{6}$,
∴由正弦定理得,$\frac{a}{sinA}=\frac{sinB}$,
則sinA=$\frac{a•sinB}$=$\frac{2×\frac{1}{2}}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∵0<A<π,a>b,∴A=$\frac{π}{4}$或$\frac{3π}{4}$,
故選D.

點評 本題考查正弦定理,以及邊角關(guān)系的應(yīng)用,注意內(nèi)角的范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC的面積為$\sqrt{3}$且b=2,c=2,則∠A等于( 。
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\frac{{x}^{2}}{{3}^{x}-1}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項和為${S_n}=p{n^2}-2n(p∈R),n∈{N^*}$,且a1與a5的等差中項為18.
(1)求{an}的通項公式;
(2)若an=2log2bn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-2|},(x≠2)}\\{1,(x=2)}\end{array}\right.$,若關(guān)于x的方程f2(x)+af(x)+b=3有三個不同實數(shù)解x1,x2,x3,則下列選項正確的是( 。
A.a+b=0B.x1+x3>2x2C.x1+x3=5D.x12+x22+x32=14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)△ABC的內(nèi)角A,B,C分別對應(yīng)邊a,b,c.若a=3,C=60°,△ABC的面積$S=\frac{9}{2}\sqrt{3}$則邊c=( 。
A.27B.$3\sqrt{7}$C.$3\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,若雙曲線${x^2}-\frac{y^2}{b^2}=1(b>0)$的焦點到其漸近線的距離等于拋物線y2=2px上的點M(1,2)到拋物線焦點的距離,求拋物線及雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一批10件產(chǎn)品,其中有3件次品,7件正品,不放回抽取2次,若第一次抽到的是正品,則第二次抽到次品的概率$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若z=1+i(i為虛數(shù)單位),則復(fù)數(shù)$\frac{4}{z}$-$\overline{z}$的虛部為( 。
A.iB.-iC.1D.-1

查看答案和解析>>

同步練習(xí)冊答案