已知f(x)=sin(x+
π
4
),x∈R
,且sinα=
1
3
,α∈[
π
2
,π]
,求f(α)的值.
分析:先由角的范圍以及同角三角函數(shù)的基本關(guān)系求出cosα的值,然后利用兩角和與差公式展開并將相應的值代入即可.
解答:解:∵α∈[
π
2
,π]
,sinα=
1
3
,
∴cosα<0,cosα=-
2
2
3

f(α)=sin(α+
π
4
)=sinα•cos
π
4
+cosα•sin
π
4

=
1
3
×
2
2
-
2
2
3
×
2
2

=
2
-4
6
點評:此題考查了利用兩角和與差公式,解題過程中要注意角的范圍,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x-
π
6
)-2m
x∈[0,
π
2
]
上有兩個零點,則m的取值范圍為(  )
A、(
1
4
,
1
2
)
B、[
1
4
,
1
2
]
C、[
1
4
,
1
2
D、(
1
4
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結(jié)論中正確的是( 。
A、函數(shù)y=f(x)•g(x)的周期為2
B、函數(shù)y=f(x)•g(x)的最大值為1
C、將f(x)的圖象向左平移
π
2
個單位后得到g(x)的圖象
D、將f(x)的圖象向右平移
π
2
個單位后得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
sinπx(x≥0)
f(x+1)-1(x<0)
,若f(-
5
6
)+f(m)=-1
,且1<m<2,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin[
π
3
(x+1)]-
3
cos[
π
3
(x+1)]
,則f(1)+f(2)+…+f(2011)+f(2012)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x+
π
6
)+cos(2x-
π
3
)

(Ⅰ)求f(x)的最大值及取得最大值時x的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(C)=1,c=2
3
,sinA=2sinB,求△ABC的面積.

查看答案和解析>>

同步練習冊答案