精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2012)的值為
 
分析:由題意求出A,T,利用周期公式求出ω,利用當x=3時取得最大值0,求出φ,得到函數(shù)的解析式,然后化簡f(1)+f(2)+f(3)+…+f(2012)求解即可.
解答:解:由題意可知A=2,T=6,所以ω=
π
3
,當x=3時取得最大值0,所以0=2sin(
π
3
×3
+φ),φ=0,所以f(x)=2sin
π
3
x,因為函數(shù)的周期為6,f(1)+f(2)+f(3)+…+f(6)=0
∴f(1)+f(2)+f(3)+…+f(2012)=f(1)+f(2)=2sin
π
3
+2sin
3
=2
3

故答案為:2
3
點評:本題是基礎(chǔ)題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數(shù)的周期的求法,以及周期在函數(shù)解析式中的利用,考查計算能力,常考題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為
π
2
,
(1)求函數(shù)f(x)的解析式和當x∈[0,π]時f(x)的單調(diào)減區(qū)間;
(2)設(shè)a∈(0,
π
2
),則f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=2cos2x的圖象,則只要將f(x)的圖象)向
平移
π
12
π
12
個單位長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值為4,最小正周期為
3

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,若△EFG是邊長為2的正三角形,則f(1)=( 。
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步練習冊答案