19.設(shè)復(fù)數(shù)z滿足$\frac{i}{z}$=1-i,則復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)z滿足$\frac{i}{z}$=1-i,∴z=$\frac{i}{1-i}$=$\frac{i(1+i)}{(1-i)(1+i)}$=-$\frac{1}{2}$+$\frac{1}{2}$i,
則復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)的點(diǎn)$(-\frac{1}{2},\frac{1}{2})$在第二象限.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.求值:25${\;}^{\frac{3}{2}}$=125;27${\;}^{\frac{2}{3}}$=9;($\frac{36}{49}$)${\;}^{\frac{3}{2}}$=$\frac{216}{343}$;($\frac{25}{4}$)${\;}^{-\frac{3}{2}}$=$\frac{8}{125}$;$\root{4}{8×\sqrt{{9}^{\frac{3}{2}}}}$=$\root{8}{1{2}^{3}}$;2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=|2x+$\frac{3}{a}$|+2|x-a|
(1)若a=3,求f(x)≥4的解集;
(2)對任意a∈(0,+∞),任意x∈R,f(x)≥m恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.長為$4\sqrt{2}$的線段AB在雙曲線x2-y2=1的一條漸近線上移動,C為拋物線y=-x2-2上的點(diǎn),則△ABC面積的最小值是(  )
A.$\frac{7}{2}$B.$\frac{7}{5}$C.$\frac{{7\sqrt{2}}}{4}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=mx+2lnx+$\frac{m-2}{x}$,m∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)函數(shù)g(x)=$\frac{m}{x}$,若至少存在一個(gè)x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{lg(y-1)≤0}\\{2x-y≤2}\end{array}\right.$,若a<$\frac{y}{x+1}$恒成立,則a的取值范圍為(-∞,$\frac{2}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=2-2Sn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=log3(1-Sn)(n∈N*),若$\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}=\frac{25}{51}$,求自然數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)命題p:方程x2+m2y2=1表示焦點(diǎn)在y軸上的橢圓,命題q:?x∈R,x2+2mx+2m≥0,若p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若實(shí)數(shù)a,b滿足a+b<0,則( 。
A.a,b都小于0B.a,b都大于0
C.a,b中至少有一個(gè)大于0D.a,b中至少有一個(gè)小于0

查看答案和解析>>

同步練習(xí)冊答案