14.若z(2+i)=-i,則|z|=( 。
A.2$\sqrt{2}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\sqrt{5}$

分析 由z(2+i)=-i,得$z=\frac{-i}{2+i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,再由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:由z(2+i)=-i,
得$z=\frac{-i}{2+i}$=$\frac{-i(2-i)}{(2+i)(2-i)}=\frac{-1-2i}{5}=-\frac{1}{5}-\frac{2}{5}i$,
則|z|=$\sqrt{(-\frac{1}{5})^{2}+(-\frac{2}{5})^{2}}=\frac{\sqrt{5}}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知tanθ=2,則sin(2θ+$\frac{π}{4}}$)的值是( 。
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知正方體ABCD-A1B1C1D1的棱AA1=2,求:
(1)求異面直線A1D與AC所成角的大。
(2)求四面體A1-DCA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某次知識(shí)競(jìng)賽中,從6道備選題中一次性隨機(jī)抽取3道,并獨(dú)立完成所抽取的3道題.某選手能正確完成其中4道題,規(guī)定至少正確答對(duì)其中2道題目便可過(guò)關(guān).
(1)求該選手能過(guò)關(guān)的概率;
(2)記所抽取的3道題中,該選手答對(duì)的題目數(shù)為X,寫(xiě)出X的概率分布列,并求E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在△ABC中,AD⊥BC,垂足為D,且BD:DC:AD=2:3:6
(1)求∠BAC的大。
(2)若E在AC上,且AC=3AE.已知△ABC的面積為15,求BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,四棱錐S-ABCD是底面ABCD為等腰梯形,CD∥AB,AC⊥BD,垂足為O,側(cè)面SAD⊥底面ABCD,且∠ADS=$\frac{π}{2}$,AB=8,AD=$\sqrt{34}$,SD=$\sqrt{30}$,M為BS的中點(diǎn).
(1)求證BS⊥平面AMC;
(2)求三棱錐B-CMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),y=f(x)的部分圖象如圖,則f($\frac{π}{2}$)=( 。
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4=10,S5=35,則公差d=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.不等式$\frac{2x-1}{x-2}$≥1的解集為{x|x>2或x≤-1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案