已知當a≤1時,集合{x|a≤x≤2-a}中有且只有3個整數(shù),則實數(shù)a的取值范圍是
 
考點:集合的表示法
專題:集合
分析:由于M={x|a≤x≤2-a}中有且只有3個整數(shù).對a分類討論,當0<a≤1時,當a=0時,當-1<a<0時,當a≤-1時,利用不等式的性質即可得出.
解答: 解:M={x|a≤x≤2-a}中有且只有3個整數(shù),
當0<a≤1時,0≤2-a-a<2,M不滿足條件,舍去.
當a=0時,0≤x≤2,M={0,1,2},滿足條件,∴a=0.
當-1<a<0時,2<2-a<3,則M={0,1,2},滿足條件,∴-1<a<0.
當a≤-1時,2-a-a=2-2a≥4,則M中含有不少于4個整數(shù),不符合條件,舍去.
綜上可得a的取值范圍是:(-1,0].
故答案為:(-1,0].
點評:本題考查了集合的性質、不等式的性質、分類討論思想方法,考查了推理能力與計算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知0<a<1,f(x)=logax+
1
logax

(1)寫出f(x)的定義域;
(2)判斷并證明f(x)在[
1
a
,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一塊外輪廓線(A,B間的曲線部分)為拋物線的鋼板,MN為拋物線的對稱軸,A,B是拋物線上關于MN對稱的兩點,其中AB=2,MN=1,先要將其割成矩形PQRS,使矩形的兩個頂點P,Q落在線段AB上,另兩個頂點R,S落在拋物線上.(1)建立適當?shù)闹苯亲鴺讼,求出這一拋物線的方程;
(2)求矩形PQRS面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個頂點A(1,0),離心率e=
6
3
,△ABC是以A為直角頂點的內(nèi)接于橢圓的等腰直角三角形.
(1)求橢圓方程;
(2)求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+2ax2+x+3.
(1)當a=1時,討論f(x)的單調(diào)性;
(2)若x∈(-∞,-1]時,不等f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={(x,y)|x=
1-y2
},N={(x,y)|y=x+m},若M∩N的子集恰有4個,則M的取值范圍是( 。
A、[-
2
,
2
]
B、[1,
2
C、[-1,
2
]
D、(-
2
,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

意大利數(shù)學家斐波那契在1202年出版的一書里提出了這樣一個問題:1對兔子飼養(yǎng)到第二個月進入成年,第三個月生1對小兔,以后每個月生1對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生1對小兔,以后每月生1對小兔,問這樣下去到年底應有多少對兔子?
(1)寫出各個月中兔子的對數(shù),即斐波那契數(shù)列(前12項),總結出該數(shù)列前后項之間的關系.
(2)畫出計算各項數(shù)值(前12項)問題的程序框圖(要求輸出各項),并編寫相應的程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線C1:y2=4x和圓C2:(x-1)2+y2=1,直線l經(jīng)過C1的焦點F,依次交C1,C2于A,B,C,D四點,則
AB
CD
的值是
 

查看答案和解析>>

同步練習冊答案