設計一個求
1
1+22
+
1
2+32
+
1
3+42
1
99+1002
的值的程序框圖.
考點:設計程序框圖解決實際問題
專題:算法和程序框圖
分析:由已知中,程序的功能我們可以利用循環(huán)結(jié)構(gòu)來解答本題,因為這是一個累加問題,故循環(huán)前累加器S=0,由于已知中的式子,可得循環(huán)變量k初值為1,步長為1,終值為99,累加量為
1
k+(k+1)2
,由此易寫出算法步驟,并畫出程序框.
解答: 解:滿足條件的程序框圖如下:
點評:本題考查的知識點是程序框圖解決實際問題,其中利用循環(huán)解答累加問題時,關鍵是根據(jù)已知中的程序確定循環(huán)變量的初值、步長、終值,及累加量的通項公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=|x2-4x-5|,g(x)=k(x-7)
(1)畫出f(x)的簡圖;
(2)若方程f(x)=g(x)有三個不等實根,求k值的集合;
(3)如果x∈[-1,5]時,函數(shù)f(x)的圖象總在直線y=k(x-7)的下方,試求出k值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(0)=-4,f(x+1)為偶函數(shù),且x=-2是函數(shù)f(x)-4的一個零點.又g(x)=mx+4(m>0).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若關于x的方程f(x)=g(x)在x∈(1,5)上有解,求實數(shù)m的取值范圍;
(Ⅲ)令h(x)=f(x)-|g(x)|,求h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;  
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g2(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
,2),
b
=(sin2ωx,-cos2ωx),(ω>0).
(Ⅰ)若f(x)=
a
b
,且f(x)的最小正周期為π,求f(x)的最大值,并求f(x)取得最大值時x的集合;
(Ⅱ)在(1)的條件下,求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)g(x)=x2+2x+alnx在區(qū)間(0,1)上單調(diào)遞減,求實數(shù)a的取值范圍.
(2)已知函數(shù)f(x)=ln(ax+1)+
1-x
1+x
(x≥0,a>0)
,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(
π
ω
x-φ
)(ω>0,0≤φ<2π)的圖象關于y軸對稱.
(1)求φ的值;
(2)若函數(shù)f(x)在(0,3)上單調(diào)遞減,試求當ω取最小值時,f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線y=k(x+1)(k>0)與拋物線y2=4x相交于A,B兩點,且A,B兩點在拋物線的準線上的射影分別是M,N,若|BN|=2|AM|,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=-
4
5
,且π<α<
2
,則cos
α
2
等于
 

查看答案和解析>>

同步練習冊答案