在△ABC中,A=60°,C=45°,c=20,則邊a的長為( 。
分析:依題意,由正弦定理
a
sinA
=
c
sinC
即可求得邊a的長.
解答:解:∵在△ABC中,A=60°,C=45°,c=20,
∴由正弦定理
a
sinA
=
c
sinC
得:
a
sin60°
=
20
sin45°

∴a=20×
3
2
2
2
=20×
6
2
=10
6
,
故選A.
點評:本題考查正弦定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=
π
6
,D是BC邊上任意一點(D與B、C不重合),且丨
AB
|2=|
AD
|2+
BD
DC
,則∠B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a=6,b=4,C=30°,則△ABC的面積是( 。
A、12
B、6
C、12
3
D、8
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=
π
6
,∠C=
π
2
,|AC|=
3
,M是AB的中點,那么(
CA
-
CB
)•
CM
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=
π
6
,D是BC邊上任意一點(D與B,C不重合)且|
AB
|2=|
AD
|2+
BD
DC
,則∠B
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a=
6
,b=2,c=
3
+1,求A、B、C及S△ABC

查看答案和解析>>

同步練習冊答案