13.已知函數(shù)f(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出函數(shù)g(x)的導(dǎo)數(shù),通過討論a的范圍,判斷函數(shù)g(x)的單調(diào)性結(jié)合函數(shù)零點(diǎn)的個(gè)數(shù)確定a的范圍即可.

解答 解:(Ⅰ)f(x)=(x-1)ex+ax2,
f′(x)=x(ex+2a),
①a≥0時(shí),令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<0,
∴f(x)在(-∞,0)遞減,在(0,+∞)遞增;
②-$\frac{1}{2}$<a<0時(shí),ln(-2a)<0,
令f′(x)>0,解得:x>0或x<ln(-2a),
令f′(x)<0,解得:ln(-2a)<x<0,
故f(x)在(-∞,ln(-2a))遞減,在(ln(-2a),0)遞增,在(0,+∞)遞減;
③a=-$\frac{1}{2}$時(shí),ln1=0,f(x)在R遞增;
④a<-$\frac{1}{2}$時(shí),ln(-2a)>0,
令f′(x)>0,解得:x<0或x>ln(-2a),
令f′(x)<0,解得:ln(-2a)>x>0,
故f(x)在(-∞,0)遞減,在(0,ln(-2a))遞增,在(ln(-2a),+∞)遞減;
(Ⅱ)函數(shù)g(x)的定義域?yàn)镽,由已知得g'(x)=x(ex+2a).
①當(dāng)a=0時(shí),函數(shù)g(x)=(x-1)ex只有一個(gè)零點(diǎn);
②當(dāng)a>0,因?yàn)閑x+2a>0,
當(dāng)x∈(-∞,0)時(shí),g'(x)<0;當(dāng)x∈(0,+∞)時(shí),g'(x)>0.
所以函數(shù)g(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
又g(0)=-1,g(1)=a,
因?yàn)閤<0,所以x-1<0,ex<1,所以ex(x-1)>x-1,所以g(x)>ax2+x-1,
取x0=$\frac{-1-\sqrt{1+4a}}{2a}$,顯然x0<0且g(x0)>0,
所以g(0)g(1)<0,g(x0)g(0)<0,
由零點(diǎn)存在性定理及函數(shù)的單調(diào)性知,函數(shù)有兩個(gè)零點(diǎn).
③當(dāng)a<0時(shí),由g'(x)=x(ex+2a)=0,得x=0,或x=ln(-2a).
。 當(dāng)a<-$\frac{1}{2}$,則ln(-2a)>0.
當(dāng)x變化時(shí),g'(x),g(x)變化情況如下表:

x(-∞,0)0(0,ln(-2a))ln(-2a)(ln(-2a),+∞)
g'(x)+0-0+
g(x)-1
注意到g(0)=-1,所以函數(shù)g(x)至多有一個(gè)零點(diǎn),不符合題意.
ⅱ) 當(dāng)a=-$\frac{1}{2}$,則ln(-2a)=0,g(x)在(-∞,+∞)單調(diào)遞增,函數(shù)g(x)至多有一個(gè)零點(diǎn),不符合題意.
若a>-$\frac{1}{2}$,則ln(-2a)≤0.
當(dāng)x變化時(shí),g'(x),g(x)變化情況如下表:
x(-∞,ln(-2a))ln(-2a)(ln(-2a),0)0(0,+∞)
g'(x)+0-0+
g(x)-1
注意到當(dāng)x<0,a<0時(shí),g(x)=(x-1)ex+ax2<0,g(0)=-1,所以函數(shù)g(x)至多有一個(gè)零點(diǎn),不符合題意.
綜上,a的取值范圍是(0,+∞).

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,∠C=45°,O是△ABC的外心,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}({m,n∈R})$,則m+n的取值范圍為[-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.正方體ABCD-A1B1C1D1中,E為AB中點(diǎn),F(xiàn)為CD1中點(diǎn).
(1)求證:EF∥平面ADD1A1;
(2)AB=2,求三棱錐D1-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的斜率為1,則實(shí)數(shù)a的值為(  )
A.-$\frac{3}{4}$B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知p:函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函數(shù),q:函數(shù)f(x)=xa-2在(0,+∞)上是增函數(shù),則p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中,正確的是(  )
A.|$\overrightarrow{a}$|=1⇒$\overrightarrow{a}$=±1B.|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$∥$\overrightarrow$⇒$\overrightarrow{a}$=$\overrightarrow$C.$\overrightarrow{a}$=$\overrightarrow$⇒$\overrightarrow{a}$∥$\overrightarrow$D.$\overrightarrow{a}$∥$\overrightarrow{0}$⇒|$\overrightarrow{a}$|=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知A,B,C是半徑為l的圓O上的三點(diǎn),AB為圓O的直徑,P為圓O內(nèi)一點(diǎn)(含圓周),則$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范圍為[-$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.等比數(shù)列{an}的公比為-$\sqrt{2}$,則ln(a20172-ln(a20162=ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)$z=\frac{a+i}{2-i}$(i 為虛數(shù)單位)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第三象限,則實(shí)數(shù)a的取值范圍是(  )
A.$({-2,\frac{1}{2}})$B.$({-\frac{1}{2},2})$C.(-∞,-2)D.$({\frac{1}{2},+∞})$

查看答案和解析>>

同步練習(xí)冊答案