(2013•天河區(qū)三模)直線y=2x與拋物線y=x2圍成的圖形的面積等于
4
3
4
3
分析:本題考查的知識點是定積分的幾何意義,首先我們要聯(lián)立兩個曲線的方程,判斷他們的交點,以確定積分公式中x的取值范圍,再根據(jù)定積分的幾何意義,所求圖形的面積為S=∫0 2( 2x-x2)dx,計算后即得答案.
解答:解:由方程組 
y=2x
y=x2
,解得,x1=0,x2=2.
故所求圖形的面積為S=∫0 2( 2x-x2)dx
=(x2-
1
3
x3)|0 2=
4
3

故答案為:
4
3
點評:在直角坐標系下平面圖形的面積的四個步驟:1.作圖象;2.求交點;3.用定積分表示所求的面積;4.微積分基本定理求定積分.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•天河區(qū)三模)如圖,一個圓形游戲轉(zhuǎn)盤被分成6個均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤,轉(zhuǎn)盤停止轉(zhuǎn)動時,箭頭A所指區(qū)域的數(shù)字就是每次游戲所得的分數(shù)(箭頭指向兩個區(qū)域的邊界時重新轉(zhuǎn)動),且箭頭A指向每個區(qū)域的可能性都是相等的.在一次家庭抽獎的活動中,要求每個家庭派一位兒童和一位成人先后分別轉(zhuǎn)動一次游戲轉(zhuǎn)盤,得分情況記為(a,b)(假設兒童和成人的得分互不影響,且每個家庭只能參加一次活動).
(Ⅰ)求某個家庭得分為(5,3)的概率?
(Ⅱ)若游戲規(guī)定:一個家庭的得分為參與游戲的兩人得分之和,且得分大于等于8的家庭可以獲得一份獎品.請問某個家庭獲獎的概率為多少?
(Ⅲ)若共有5個家庭參加家庭抽獎活動.在(Ⅱ)的條件下,記獲獎的家庭數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天河區(qū)三模)已知函數(shù)f(x)=
1+lg(x-1),x>1
g(x),x<1
的圖象關于點P對稱,且函數(shù)y=f(x+1)-1為奇函數(shù),則下列結論:
(1)點P的坐標為(1,1);
(2)當x∈(-∞,0)時,g(x)>0恒成立;
(3)關于x的方程f(x)=a,a∈R有且只有兩個實根.
其中正確結論的題號為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天河區(qū)三模)設f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導函數(shù)為f'(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設函數(shù)f(x)=Inx+
b+2x+1
(x>1)
,其中b為實數(shù).
(i)求證:函數(shù)f(x)具有性質(zhì)P(b);
(ii)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設m為實數(shù),a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天河區(qū)三模)函數(shù)y=cosx的圖象上各點的橫坐標變?yōu)樵瓉淼?span id="k2m02ki" class="MathJye">
1
2
倍(縱坐標不變),再向左平移
π
6
個單位,則所得函數(shù)的解析式是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天河區(qū)三模)已知數(shù)列{an}為等差數(shù)列,且a2+a7+a12=24,Sn為數(shù)列{an}的前n項和,n∈N*,則S13的值為( 。

查看答案和解析>>

同步練習冊答案