【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(﹣3)=0,當(dāng)x>0時(shí),有f(x)﹣xf′(x)>0成立,則不等式f(x)>0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(0,3)
D.(﹣3,0)∪(3,+∞)

【答案】A
【解析】解:設(shè)g(x)= ,
則g′(x)= ,
∵當(dāng)x>0時(shí),有f(x)﹣xf′(x)>0成立,
∴當(dāng)x>0時(shí),有xf′(x)﹣f(x)<0成立,即此時(shí)g′(x)<0,函數(shù)g(x)為減函數(shù),
∵f(x)是定義在R上的奇函數(shù)且f(﹣3)=0,
∴f(3)=0,且g(x)是偶函數(shù),g(3)=g(﹣3)=0,
當(dāng)x>0時(shí),f(x)>0等價(jià)為g(x)>0,即g(x)>g(3),得0<x<3,
當(dāng)x<0時(shí),f(x)>0等價(jià)為g(x)<0,即g(x)<g(﹣3),
此時(shí)函數(shù)g(x)增函數(shù),得x<﹣3,
綜上不等式f(x)>0的解集是(﹣∞,﹣3)∪(0,3),
故選:A.

【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)和基本求導(dǎo)法則的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z=k﹣2i(k∈R)的共軛復(fù)數(shù) ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若過(guò)點(diǎn)(0,﹣2)的直線(xiàn)l的斜率為k,求直線(xiàn)l與曲線(xiàn)y= 以及y軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A. 選修4-1:幾何證明選講

如圖,已知為圓的一條弦,點(diǎn)為弧的中點(diǎn),過(guò)點(diǎn)任作兩條弦分別交于點(diǎn).

求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時(shí),證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(sinx+ cosx)2﹣2.
(1)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[﹣ , ],求函數(shù)g(x)= f2(x)﹣f(x+ )﹣1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知( +3x2n的展開(kāi)式中,各項(xiàng)系數(shù)和比它的二項(xiàng)式系數(shù)和大992,求:
(1)展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3個(gè)人坐在一排6個(gè)座位上,問(wèn):
(1)3個(gè)人都相鄰的坐法有多少種?
(2)空位都不相鄰的坐法有多少種?
(3)空位至少有2個(gè)相鄰的坐法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E為CC1的中點(diǎn),則異面直線(xiàn)BC1與AE所成角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex , 對(duì)于實(shí)數(shù)m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),則p的最大值等于

查看答案和解析>>

同步練習(xí)冊(cè)答案