【題目】有下列四個(gè)命題:
①“已知函數(shù)y=f(x),x∈ D,若D關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)y=f(x),x∈ D為奇函數(shù)”的逆命題;
②“對(duì)應(yīng)邊平行的兩角相等”的否命題;
③“若a≠0,則方程ax+b=0有實(shí)根”的逆否命題;
④“若A∪ B=B,則B≠A”的逆否命題.
其中的真命題是( )
A. ①② B. ②③
C. ①③ D. ③④
【答案】C
【解析】
①求出逆命題,根據(jù)奇函數(shù)性質(zhì)判斷即可;②求出否命題,根據(jù)立體幾何知識(shí)判斷;③由一元一次方程知識(shí)判斷原命題真假即可;④根據(jù)集合間的關(guān)系,判斷原命題真假即可.
①逆命題為:若函數(shù)為奇函數(shù),則D關(guān)于原點(diǎn)對(duì)稱(chēng),根據(jù)奇函數(shù)的性質(zhì)可知是真命題;②否命題為:若兩角對(duì)應(yīng)邊不平行,則兩個(gè)角不相等,因?yàn)榻鞘强梢栽谌我馕恢卯?huà)的,相等的兩角不一定對(duì)應(yīng)邊平行,所以是假命題;③當(dāng)時(shí),方程為一元一次方程,必有實(shí)根,所以是真命題,其逆否命題也是真命題;④若并集等于集合B,則集合A為集合B的的子集,可以相等,所以是假命題,故逆否命題也是假命題.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為,曲線(xiàn)C2的極坐標(biāo)方程為 (a>0).
(1)求直線(xiàn)l與曲線(xiàn)C1的交點(diǎn)的極坐標(biāo)(ρ,θ)(ρ≥0,0≤θ<2π);
(2)若直線(xiàn)l與C2相切,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四面體ABCD中,AB,BC,BD兩兩垂直,BC=BD=2,點(diǎn)E是CD的中點(diǎn),異面直線(xiàn)AD與BE所成角的余弦值為,則直線(xiàn)BE與平面ACD所成角的正弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小型工廠安排甲、乙兩種產(chǎn)品的生產(chǎn),已知工廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需要的原材料A,B,C的數(shù)量和一周內(nèi)可用資源數(shù)量如下表所示:
原材料 | 甲(噸) | 乙(噸) | 資源數(shù)量(噸) |
A | 1 | 1 | 50 |
B | 4 | 0 | 160 |
C | 2 | 5 | 200 |
如果甲產(chǎn)品每噸的利潤(rùn)為300元,乙產(chǎn)品每噸的利潤(rùn)為200元,那么適當(dāng)安排生產(chǎn)后,工廠每周可獲得的最大利潤(rùn)為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),曲線(xiàn)C的極坐標(biāo)方程是ρcos2θ=sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn).
(1)寫(xiě)出直線(xiàn)l的極坐標(biāo)方程與曲線(xiàn)C普通方程;
(2)線(xiàn)段MA,MB長(zhǎng)度分別記為|MA|,|MB|,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正非負(fù)半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,圓的極坐標(biāo)方程為ρ=4sinθ.
(1)求直線(xiàn)l被圓截得的弦長(zhǎng);
(2)從極點(diǎn)作圓C的弦,求各弦中點(diǎn)的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知sinA= ,tan(A﹣B)=﹣ .
(1)求tanB的值;
(2)若b=5,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).
(1)若曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處與直線(xiàn)y=8相切,求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com