3.下列命題中,真命題是( 。
A.?x0∈R,使得ex0≤0B.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)
C.?x∈R,2x>x2D.a>1,b>1是ab>1的充分不必要條件

分析 A.由?x∈R,ex>0,即可判斷出正誤;
B.取x=$\frac{3π}{2}$,則$sinx+\frac{1}{sinx}$=-2,即可判斷出正誤;
C.取x=2,4時,2x=x2,即可判斷出正誤;
D.a(chǎn)>1,b>1⇒ab>1,反之不成立,例如。篴=3,b=$\frac{1}{2}$.即可判斷出正誤.

解答 解:A.∵?x∈R,ex>0,因此不正確;
B.取x=$\frac{3π}{2}$,則$sinx+\frac{1}{sinx}$=-2,因此不正確;
C.取x=2,4時,2x=x2,因此不正確;
D.a(chǎn)>1,b>1⇒ab>1,反之不成立,例如。篴=3,b=$\frac{1}{2}$.因此a>1,b>1是ab>1的充分不必要條件.
故選:D.

點評 本題考查了函數(shù)的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a<0,解關(guān)于x的不等式ax2+(1-a)x-1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求適合下列條件的標準方程:
(1)焦點在x軸上,與橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1具有相同的離心率且過點(2,-$\sqrt{3}$)的橢圓的標準方程;
(2)焦點在x軸上,頂點間的距離為6,漸近線方程為y=±$\frac{1}{3}$x的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(m,1).若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,則實數(shù)m=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=|ax-1|(a∈R),不等式f(x)>5的解集為{x|x<-3或x>2}.
(1)求a的值;
(2)解不等式f(x)-f($\frac{x}{2}$)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.數(shù)列$\frac{1}{2}$,$\frac{1}{2^2}$,$\frac{1}{2^2}$,$\frac{1}{2^3}$,$\frac{1}{2^3}$,$\frac{1}{2^3}$,$\frac{1}{2^4}$,$\frac{1}{2^4}$,$\frac{1}{2^4}$,$\frac{1}{2^4}$,$\frac{1}{2^5}$,…,則該數(shù)列的第28項為$\frac{1}{128}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥1的解集A滿足[-1,1]⊆A.
(1)求實數(shù)m的取值范圍B;
(2)若a,b,c∈(0,+∞),m0為B中的最小元素且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=m0,求證:a+2b+3c≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\sqrt{1+a•{4^x}}$的定義域為(-∞,-1],則實數(shù)a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,前三項分別為x,2x,5x-4,前n項和為Sn,且Sk=2550.
(1)求x和k的值;
(2)求T=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

同步練習(xí)冊答案