【題目】若函數(shù)的圖像與的圖像交于不同的兩點,線段的中點為

1)求實數(shù)的取值范圍;

2)證明:

【答案】12)證明見解析;

【解析】

1)設,轉(zhuǎn)化為有兩個零點時的取值范圍,求,求出單調(diào)區(qū)間,確定極值,結(jié)合零點存在性定理,即可求解;

2)將所證的不等式表示,,再令,轉(zhuǎn)化為證明 ,再等價轉(zhuǎn)化構造函數(shù),,利用求導研究函數(shù)的單調(diào)性,即可證明不等式.

1)設,

題意即有兩個不同的零點,

時,上單調(diào)遞增,

至多一個零點,不滿足題意.

時,令,得

時,,單調(diào)遞減,

時,,單調(diào)遞增,

所以時,取得極小值,

也是最小值為

,則至多一個零點,不滿足題意.

,則由

存在一個零點,

.

上恒成立,

,所以.

所以存在一個零點,

從而有個兩個不同零點,滿足題意.

綜上,實數(shù)的取值范圍是.

2)要證只要證

只需證

不妨設,即證

要證,只需證,

,則

所以上為增函數(shù),

從而,即成立.

要證,只需證

.

所以上為減函數(shù),從而,

中上成立,

所以成立,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關系式b,c為大于0的常數(shù)).按照某項指標測定,當產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸xmm

38

48

58

68

78

88

質(zhì)量

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,求選中的2件均為優(yōu)等品的概率;

2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

根據(jù)所給統(tǒng)計量,求y關于x的回歸方程.

附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為

(1)求橢圓的標準方程;

(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標;若不存在,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在矩形中,,沿直線BD將△ABD折成,使得點在平面上的射影在內(nèi)(不含邊界),設二面角的大小為,直線 ,與平面中所成的角分別為,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生活超市有一專柜預代理銷售甲乙兩家公司的一種可相互替代的日常生活用品.經(jīng)過一段時間分別單獨試銷甲乙兩家公司的商品,從銷售數(shù)據(jù)中隨機各抽取50天,統(tǒng)計每日的銷售數(shù)量,得到如下的頻數(shù)分布條形圖.甲乙兩家公司給該超市的日利潤方案為:甲公司給超市每天基本費用為90元,另外每銷售一件提成1元;乙公司給超市每天的基本費用為130元,每日銷售數(shù)量不超過83件沒有提成,超過83件的部分每件提成10元.

(Ⅰ)求乙公司給超市的日利潤(單位:元)與日銷售數(shù)量的函數(shù)關系;

(Ⅱ)若將頻率視為概率,回答下列問題:

1)求甲公司產(chǎn)品銷售數(shù)量不超過87件的概率;

2)如果僅從日均利潤的角度考慮,請你利用所學過的統(tǒng)計學知識為超市作出抉擇,選擇哪家公司的產(chǎn)品進行銷售?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求證:

2)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2.

1)設1箱零件人工檢驗總費用為元,求的分布列;

2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6.現(xiàn)有1000箱零件需要檢驗,以檢驗總費用的數(shù)學期望為依據(jù),在人工檢驗與機器檢驗中,應該選擇哪一個?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知棱長為2的正方體中,EDC中點,F在線段上運動,則三棱錐的外接球的表面積最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜三棱柱中,是邊長為2的正三角形,的中點,平面,點上,的交點,且與平面所成的角為

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

同步練習冊答案