【題目】已知關(guān)于x的方程|2x3﹣8x|+mx=4有且僅有2個實數(shù)根,則實數(shù)m的取值范圍為(
A.(﹣∞,﹣2)∪(2,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣2,2)
D.(﹣1,1)

【答案】A
【解析】解:由|2x3﹣8x|+mx=4得|2x3﹣8x|=4﹣mx, 作出y=|2x3﹣8x|和y=4﹣mx的函數(shù)圖象,

當(dāng)0<x<2時,y=|2x3﹣8x|=﹣2x3+8x,
若直線y=4﹣mx經(jīng)過點(﹣2,0),則﹣m=2,即m=﹣2,
若直線y=4﹣mx與y=﹣2x3+8x相切,切點坐標(biāo)為(x0 , y0),
,解得x0=1,y0=6,m=﹣2,
由圖象的對稱性可知,若直線y=4﹣mx與y=|2x3﹣8x|的圖象有2個交點,
∴﹣m>2或﹣m<﹣2,
即m<﹣2或m>2.
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}中,a22,a5128.

() 求數(shù)列{an}的通項公式;

()bn,且數(shù)列{bn}的前項和為Sn360,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1過點A(0,1),l2過點B(5,0),如果l1l2,且l1與l2的距離為5,求l1、l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.曲線C2的極坐標(biāo)方程為ρsin(θ﹣ )= m
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

,函數(shù)在上的最小值為4,求a的值;

對于中的函數(shù)在區(qū)間A上的值域是,求區(qū)間長度最大的注:區(qū)間長度區(qū)間的右端點區(qū)間的左斷點;

中函數(shù)的定義域是解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省組織了一次高考模擬考試,該省教育部門抽取了1000名考生的數(shù)學(xué)考試成績,并繪制成頻率分布直方圖如圖所示.
(Ⅰ)求樣本中數(shù)學(xué)成績在95分以上(含95分)的學(xué)生人數(shù);
(Ⅱ)已知本次模擬考試全省考生的數(shù)學(xué)成績X~N(μ,σ2),其中μ近似為樣本的平均數(shù),σ2近似為樣本方差,試估計該省的所有考生中數(shù)學(xué)成績介于100~138.2分的概率;
(Ⅲ)以頻率估計概率,若從該省所有考生中隨機(jī)抽取4人,記這4人中成績在[105,125)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù): ≈18.9, ≈19.1, ≈19.4.
若Z∽N(μ,σ2),則P(μ﹣σ<Z<μ+σ)=0.9826,P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng), 恒成立,求實數(shù)的取值范圍.

(2)設(shè)上有兩個極值點.

(A)求實數(shù)的取值范圍;

(B)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱的底面是直角三角形,,側(cè)棱與底面成銳角,點在底面上的射影落在邊上.

(Ⅰ) 求證:平面;

(Ⅱ) 當(dāng)為何值時,,且的中點?

(Ⅲ) 當(dāng),且的中點時,若,四棱錐的體積為,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 圖像上的點P( ,t )向左平移s(s﹥0) 個單位長度得到點P′.若 P′位于函數(shù)y=sin2x的圖像上,則( )
A.t= ,s的最小值為
B.t= ,s的最小值為
C.t= ,s的最小值為
D.t= ,s的最小值為

查看答案和解析>>

同步練習(xí)冊答案