【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(2)若關(guān)于的不等式在有解,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)見解析(3)
【解析】試題分析:(1)由為奇函數(shù)可知, ,即可得解;
(2)由遞增可知在上為減函數(shù),對(duì)于任意實(shí)數(shù),不妨設(shè),化簡判斷正負(fù)即可證得;
(3)不等式,等價(jià)于,即,原問題轉(zhuǎn)化為在上有解,求解的最大值即可.
試題解析
解:(1)由為奇函數(shù)可知, ,解得.
(2)由遞增可知在上為減函數(shù),
證明:對(duì)于任意實(shí)數(shù),不妨設(shè),
∵遞增,且,∴,∴,
∴,故在上為減函數(shù).
(3)關(guān)于的不等式,
等價(jià)于,即,
因?yàn)?/span>,所以,
原問題轉(zhuǎn)化為在上有解,
∵在區(qū)間上為減函數(shù),
∴, 的值域?yàn)?/span>,
∴,解得,
∴的取值范圍是.
點(diǎn)晴:本題屬于對(duì)函數(shù)單調(diào)性應(yīng)用的考察,若函數(shù)在區(qū)間上單調(diào)遞增,則時(shí),有,事實(shí)上,若,則,這與矛盾,類似地,若在區(qū)間上單調(diào)遞減,則當(dāng)時(shí)有;據(jù)此可以解不等式,由函數(shù)值的大小,根據(jù)單調(diào)性就可以得自變量的大小關(guān)系.本題中可以利用對(duì)稱性數(shù)形結(jié)合即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當(dāng)a=-2時(shí),求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),
(1)證明:PA∥平面EDB
(2)證明:平面BDE平面PCB
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第 個(gè)圖形包含 個(gè)小正方形.
(Ⅰ)求出 ;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出 與 的關(guān)系式,并根據(jù)你得到的關(guān)系式求 的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)中點(diǎn)坐標(biāo)公式求出中點(diǎn)的坐標(biāo),根據(jù)斜率公式可求得的斜率,利用點(diǎn)斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點(diǎn)斜式可求邊上的高所在直線的方程.
試題解析:(1)由B(10,4),C(2,-4),得BC中點(diǎn)D的坐標(biāo)為(6,0),
所以AD的斜率為k==8,
所以BC邊上的中線AD所在直線的方程為y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直線的斜率為k==1,
所以BC邊上的高所在直線的斜率為-1,
所以BC邊上的高所在直線的方程為y-8=-(x-7),即x+y-15=0.
【題型】解答題
【結(jié)束】
17
【題目】已知直線l:x-2y+2m-2=0.
(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣a)|x﹣a|﹣x|x|+2a+1(a<0,)若存在x0∈[﹣1,1],使f(x0)≤0,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 的前 項(xiàng)和為 ,且滿足 ,求數(shù)列 的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請(qǐng)你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè) 的值為1,根據(jù)已知條件,計(jì)算出 , , .
猜想: .
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng) 時(shí), , 猜想成立
②假設(shè) ( N*)時(shí),猜想成立,即 .
那么,當(dāng) 時(shí),由已知 ,得 .
又 ,兩式相減并化簡,得 (用含 的代數(shù)式表示).
所以,當(dāng) 時(shí),猜想也成立.
根據(jù)①和②,可知猜想對(duì)任何 N*都成立.
思路2:先設(shè) 的值為1,根據(jù)已知條件,計(jì)算出 .
由已知 ,寫出 與 的關(guān)系式: ,
兩式相減,得 與 的遞推關(guān)系式: .
整理: .
發(fā)現(xiàn):數(shù)列 是首項(xiàng)為 , 公比為的等比數(shù)列.
得出:數(shù)列 的通項(xiàng)公式 , 進(jìn)而得到 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)大學(xué)生畢業(yè)后自主創(chuàng)業(yè)人員給予小額貸款補(bǔ)貼,貸款期限分為6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,對(duì)于這五種期限的貸款政府分別補(bǔ)貼200元、300元、300元、400元、400元,從2016年享受此項(xiàng)政策的自主創(chuàng)業(yè)人員中抽取了100人進(jìn)行調(diào)查統(tǒng)計(jì),選取貸款期限的頻數(shù)如表:
貸款期限 | 6個(gè)月 | 12個(gè)月 | 18個(gè)月 | 24個(gè)月 | 36個(gè)月 |
頻數(shù) | 20 | 40 | 20 | 10 | 10 |
以上表中各種貸款期限的頻數(shù)作為2017年自主創(chuàng)業(yè)人員選擇各種貸款期限的概率.
(Ⅰ)某大學(xué)2017年畢業(yè)生中共有3人準(zhǔn)備申報(bào)此項(xiàng)貸款,計(jì)算其中恰有兩人選擇貸款期限為12個(gè)月的概率;
(Ⅱ)設(shè)給某享受此項(xiàng)政策的自主創(chuàng)業(yè)人員補(bǔ)貼為X元,寫出X的分布列;該市政府要做預(yù)算,若預(yù)計(jì)2017年全市有600人申報(bào)此項(xiàng)貸款,則估計(jì)2017年該市共要補(bǔ)貼多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐 中,四邊形 為平行四邊形, 為等邊三角形,AABE是以 為直角的等腰直角三角形,且 .
(1)證明: 平面 平面BCE;
(2)求二面角 的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com