【題目】已知直線l過(guò)點(diǎn)P(0,﹣4),且傾斜角為 ,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
(2)若直線l和圓C相交于A、B兩點(diǎn),求|PA||PB|及弦長(zhǎng)|AB|的值.

【答案】
(1)解:直線l的參數(shù)方程為 (t為參數(shù)),即 (t為參數(shù)).

圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,∴圓C的直角坐標(biāo)方程為:x2+y2=4x


(2)解:把直線l的參數(shù)方程代入圓C的方程,化簡(jiǎn)得 +16=0,

△>0,∴t1t2=16,t1+t2=6

∴|PA||PB|=|t1t2|=16,

弦長(zhǎng)|AB|=|t1﹣t2|= = =2


【解析】(1)直線l的參數(shù)方程為 (t為參數(shù)),化簡(jiǎn)即可得出.圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式即可得出圓C的直角坐標(biāo)方程.(2)把直線l的參數(shù)方程代入圓C的方程,化簡(jiǎn)得 +16=0,利用根與系數(shù)的關(guān)系及其:|PA||PB|=|t1t2|,弦長(zhǎng)|AB|=|t1﹣t2|= ,即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 + 的最小值為(
A.4
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E的中心在原點(diǎn),離心率為 ,右焦點(diǎn)到直線x+y+ =0的距離為2.
(1)求橢圓E的方程;
(2)橢圓下頂點(diǎn)為A,直線y=kx+m(k≠0)與橢圓相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)當(dāng), 時(shí),求的單調(diào)減區(qū)間;

(2)時(shí),函數(shù),若存在,使得恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.

(1)求證:BC⊥平面PAC;
(2)若M是PC的中點(diǎn),求二面角M﹣AD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lg[log x﹣1)]的定義域?yàn)榧螦,集合B={x|x<1,或x≥3}.
(1)求A∪B,(RB)∩A;
(2)若2a∈A,且log2(2a﹣1)∈B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名運(yùn)動(dòng)員參加“選拔測(cè)試賽”,在相同條件下,兩人6次測(cè)試的成績(jī)(單位:分)記錄如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰(shuí)參賽更好?說(shuō)明理由(不用計(jì)算);

(2)若將頻率視為概率,對(duì)運(yùn)動(dòng)員甲在今后三次測(cè)試成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)高于85分的次數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線C1 ( t 為參數(shù)),曲線C2 (r>0,θ為參數(shù)).

(1)當(dāng)r=1時(shí),求C 1 與C2的交點(diǎn)坐標(biāo);

(2)點(diǎn)P 為曲線 C2上一動(dòng)點(diǎn),當(dāng)r=時(shí),求點(diǎn)P 到直線C1距離最大時(shí)點(diǎn)P 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù)中,表示同一個(gè)函數(shù)的是(
A.y= 與y=x+1
B.y=lgx與y= lgx2
C.y= ﹣1與y=x﹣1
D.y=x與y=logaax(a>0且a≠1)

查看答案和解析>>

同步練習(xí)冊(cè)答案