【題目】已知動點 到點 的距離比它到直線 的距離小 ,記動點 的軌跡為 .若以 為圓心, 為半徑( )作圓,分別交 軸于 兩點,連結(jié)并延長 ,分別交曲線 于 兩點.
(1)求曲線 的方程;
(2)求證:直線 的斜率為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點為F1(﹣ ,0),F(xiàn)2( ,0),M是橢圓上一點,若 =0,| || |=8.
(1)求橢圓的方程;
(2)點P是橢圓上任意一點,A1、A2分別是橢圓的左、右頂點,直線PA1 , PA2與直線x= 分別交于E,F(xiàn)兩點,試證:以EF為直徑的圓交x軸于定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了引導(dǎo)居民合理用水,某市決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價,具體劃分標(biāo)準(zhǔn)如表:
階梯級別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) | (0,10] | (10,15] | (15,+∞) |
從本市隨機抽取了10戶家庭,統(tǒng)計了同一個月的用水量,得到如圖所示的莖葉圖.
(1)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)的分布列和均值;
(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到n戶月用水量為第二階梯水量的可能性最大,求出n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 (本小題滿分12分)
已知圓C:,直線過定點A (1,0).
(1)若與圓C相切,求的方程;
(2)若與圓C相交于P、Q兩點,求三角形CPQ的面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,若對任意都有(為常數(shù))成立,則稱為“等差比數(shù)列”,下面對“等差比數(shù)列” 的判斷:①不可能為;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項公式為(其中,且,)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ,以原點為圓心,雙曲線的實半軸長為半徑的圓與雙曲線的兩條漸近線相交于 四點,四邊形 的面積為 ,則雙曲線的離心率為( )
A.
B.2
C.
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 當(dāng)a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估一種農(nóng)作物的種植效果,選了n塊地作試驗田.這n塊地的畝產(chǎn)量(單位: )分別為 ,下面給出的指標(biāo)中可以用來評估這種農(nóng)作物畝產(chǎn)量穩(wěn)定程度的是( )
A. 的平均數(shù)
B. 的標(biāo)準(zhǔn)差
C. 的最大值
D. 的中位數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com