某校為了了解學(xué)生參加社會實踐活動的意向,采用分層抽樣從高一、高二、高三學(xué)生中抽取容量為200的樣本進行調(diào)查,已知高一、高二、高三的學(xué)生人數(shù)之比為4:3:3,則應(yīng)從高三學(xué)生中抽取的人數(shù)是(  )
A、30B、40C、60D、80
考點:分層抽樣方法
專題:計算題,概率與統(tǒng)計
分析:根據(jù)三個年級的人數(shù)比,做出高三所占的比例,用要抽取得樣本容量乘以高三所占的比例,得到要抽取的高三的人數(shù).
解答: 解:∵高一、高二、高三年級的學(xué)生人數(shù)之比為4:3:3,
∴高三在總體中所占的比例是
3
10
,
∵用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為200的樣本,
∴要從高三抽取
3
10
×200=60名學(xué)生,
故選:C.
點評:本題考查分層抽樣方法,本題解題的關(guān)鍵是看出三個年級中各個年級所占的比例,這就是在抽樣過程中被抽到的概率,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某廠家生產(chǎn)甲、乙、丙三種樣式的杯子,每種杯子均有300ml和500ml兩種型號,某月的產(chǎn)量(單位:個)如下表所示:
型號甲樣式乙樣式丙樣式
300mlz25003000
500ml300045005000
按樣式用分層抽樣的方法在這個月生產(chǎn)的杯子中隨機的抽取100個,其中有乙樣式的杯子35個.
(Ⅰ)求z的值;
(Ⅱ)用分層抽樣的方法在甲樣式的杯子中抽取一個容量為5的樣本,從這個樣本中任取2個杯子,求至少有1個300ml的杯子的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線a∥平面α,則( 。
A、平面α內(nèi)有且只有一條直線與a平行
B、平面α內(nèi)有無數(shù)條直線與a平行
C、平面α內(nèi)不存在與a垂直的直線
D、平面α內(nèi)有且只有一條直線與a垂直的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出函數(shù)y=Asin(ωx+φ)+k,(A>0,ω>0,0≤φ≤2π),的部分圖象,求解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義如表,數(shù)列{xn}滿足x0=5,且對任意自然數(shù)均有xn+1=f(xn),則x2012的值為( 。
x12345
f(x)51342
A、1B、2C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
3
和3之間插入2014個數(shù),使這2016個數(shù)成等比數(shù)列,則插入的2014個數(shù)的乘積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)10m=4,n=2lg5,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
sinwx+coswx+1,(w>0)的最小正周期為π
(1)求實數(shù)w 的值;
(2)當(dāng)0≤x≤
π
4
時,求此函數(shù)的最值及此時的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1),四邊形ABCD為等腰梯形,AB∥CD,E,F(xiàn)分別為AB、CD的中點,且AB=4,CD=2,EF=1,現(xiàn)將四邊形BCEF沿EF折起到四邊形B1C1FE的位置,如圖(2),使平面B1C1FE⊥平面AEFD.
(1)求證:C1F∥平面AEB1;
(2)求證:AD⊥平面B1ED;
(3)線段B1D上是否存在一點G,使EG⊥平面AB1D,若存在求
B1G
GD
的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案