精英家教網 > 高中數學 > 題目詳情

【題目】(選修4﹣1:幾何證明選講)
如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D.

(1)證明:DB=DC;
(2)設圓的半徑為1,BC= ,延長CE交AB于點F,求△BCF外接圓的半徑.

【答案】
(1)證明:連接DE交BC于點G.

由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,

∴∠CBE=∠BCE,BE=CE.

又∵DB⊥BE,∴DE為⊙O的直徑,∠DCE=90°.

∴△DBE≌△DCE,∴DC=DB.


(2)證明:由(1)可知:∠CDE=∠BDE,DB=DC.

故DG是BC的垂直平分線,∴BG=

設DE的中點為O,連接BO,則∠BOG=60°.

從而∠ABE=∠BCE=∠CBE=30°.

∴CF⊥BF.

∴Rt△BCF的外接圓的半徑=


【解析】(1)連接DE交BC于點G,由弦切角定理可得∠ABE=∠BCE,由已知角平分線可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE為⊙O的直徑,Rt△DBE≌Rt△DCE,利用三角形全等的性質即可得到DC=DB.(2)由(1)可知:DG是BC的垂直平分線,即可得到BG= .設DE的中點為O,連接BO,可得∠BOG=60°.從而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.進而得到Rt△BCF的外接圓的半徑=

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數是定義域為R的奇函數.

k值;

,試判斷函數單調性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線關于軸對稱,頂點在坐標原點,直線經過拋物線的焦點.

(1)求拋物線的標準方程;

(2)若不經過坐標原點的直線與拋物線相交于不同的兩點 ,且滿足,證明直線軸上一定點,并求出點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過點和直線相切.

(1)求圓的方程;

(2)若直線經過點,并且被圓截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4﹣1:幾何證明選講
如圖,AB為⊙O直徑,直線CD與⊙O相切與E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2=ADBC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出以下四個命題:

①如果一條直線和一個平面平行,經過這條直線的一個平面和這個平面相交,那么這條直線和交線平行,

②如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面,

③如果兩條直線都平行于一個平面,那么這兩條直線互相平行,

④如果一個平面經過另一個平面的一條垂線,那么些兩個平面互相垂直.

其中真命題的個數是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過原點且與直線相切于點

(Ⅰ)求圓的方程;

(Ⅱ)在圓上是否存在兩點關于直線對稱,且以線段為直徑的圓經過原點?若存在,寫出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校對高三年級的學生進行體檢,現將高三男生的體重(單位:㎏)數據進行整理后分成五組,并繪制頻率分布直方圖(如圖所示).根據一般標準,高三男生的體重超過65㎏屬于偏胖,低于55㎏屬于偏瘦,已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25、0.20、0.10、0.05,第二小組的頻率數為400,則該校高三年級的男生總數和體重正常的頻率分別為(

A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60

查看答案和解析>>

同步練習冊答案