AC是平面α內(nèi)的一條射線,P為α外一點(diǎn),PA=2,P到α的距離是1,設(shè)∠PAC=θ,則有


  1. A.
    θ=30°
  2. B.
    θ>30°
  3. C.
    θ≥30°
  4. D.
    θ≤30°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)等腰直角三角形的硬紙片△ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能夠量長(zhǎng)度的直尺,應(yīng)該如何確定A、B的位置,使得二面角A-CD-B是直二面角?證明你的結(jié)論.
(2)試在平面ABC上確定一點(diǎn)P,使DP與平面ABC內(nèi)任意一條直線垂直,證明你的結(jié)論.
(3)如果在折成的三棱錐內(nèi)有一個(gè)小球,求出球的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年吉林省高二下學(xué)期期末考試文科數(shù)學(xué)卷 題型:選擇題

AC是平面內(nèi)的一條直線,P為外一點(diǎn),PA=2,P到的距離是1,記AC與PA所成的角為,則必有(    )

A.     B.cos     C.sin   D.tan

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)等腰直角三角形的硬紙片△ABC中,∠ACB=90°,AC=4cmCD是斜邊上的高,沿CD把△ABC折成直二面角.

⑴如果你手中只有一把能夠量長(zhǎng)度的直尺,應(yīng)該如何確定AB的位置,使得二面角ACDB是直二面角?證明你的結(jié)論.

⑵試在平面ABC上確定一點(diǎn)P,使DP與平面ABC內(nèi)任意一條直線垂直,證明你的結(jié)論.

⑶如果在折成的三棱錐內(nèi)有一個(gè)小球,求出球的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)等腰直角三角形的硬紙片△ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高,沿CD把△ABC折成直二面角.

⑴如果你手中只有一把能夠量長(zhǎng)度的直尺,應(yīng)該如何確定A、B的位置,使得二面角ACDB是直二面角?證明你的結(jié)論.

⑵試在平面ABC上確定一點(diǎn)P,使DP與平面ABC內(nèi)任意一條直線垂直,證明你的結(jié)論.

⑶如果在折成的三棱錐內(nèi)有一個(gè)小球,求出球的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省鄂州市高一(下)期末數(shù)學(xué)試卷(文理合卷)(解析版) 題型:解答題

如圖,一個(gè)等腰直角三角形的硬紙片△ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能夠量長(zhǎng)度的直尺,應(yīng)該如何確定A、B的位置,使得二面角A-CD-B是直二面角?證明你的結(jié)論.
(2)試在平面ABC上確定一點(diǎn)P,使DP與平面ABC內(nèi)任意一條直線垂直,證明你的結(jié)論.
(3)如果在折成的三棱錐內(nèi)有一個(gè)小球,求出球的半徑的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案