【題目】已知函數(shù)f(x)=(x+1)ln x-a(x-1).
(1)當(dāng)a=4時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)若當(dāng)x∈(1,+∞)時(shí),f(x)>0恒成立,求a的取值范圍.
【答案】(1)2x+y-2=0.(2)(-∞,2].
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得f′(1)=k,再根據(jù)點(diǎn)斜式求切線方程(2)不等式恒成立問(wèn)題一般轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題: ,利用導(dǎo)數(shù)可得函數(shù)單調(diào)性:為單調(diào)遞增,再利用洛必達(dá)法則得,即得的取值范圍
試題解析:解 (1)f(x)的定義域?yàn)?/span>(0,+∞).當(dāng)a=4時(shí),
f(x)=(x+1)ln x-4(x-1),f′(x)=ln x+-3,f′(1)=-2,f(1)=0.
故曲線y=f(x)在(1,f(1))處的切線方程為2x+y-2=0.
(2)當(dāng)x∈(1,+∞)時(shí),f(x)>0等價(jià)于ln x->0.
設(shè)g(x)=ln x-,則g′(x)=-=,g(1)=0.
(i)當(dāng)a≤2,x∈(1,+∞)時(shí),x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,
g(x)在(1,+∞)上單調(diào)遞增,因此g(x)>0.
(ii)當(dāng)a>2時(shí),令g′(x)=0,得x1=a-1-,x2=a-1+.
由x2>1和x1x2=1得x1<1,故當(dāng)x∈(1,x2)時(shí),g′(x)<0,g(x)在(1,x2)上單調(diào)遞減,因此g(x)<0.
綜上,a的取值范圍是(-∞,2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M(x,y)滿(mǎn)足 若ax+y的最小值為3,則a的值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ∥ ,求 的值;
(2)已知函數(shù)f(x)=2( + ) ﹣2m2﹣1,若函數(shù)f(x)在[0, ]上有零點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(n)是定義在N*上的增函數(shù),f(4)=5,且滿(mǎn)足:
①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某休閑農(nóng)莊有一塊長(zhǎng)方形魚(yú)塘ABCD,AB=50米,BC=25 米,為了便于游客休閑散步,該農(nóng)莊決定在魚(yú)塘內(nèi)建三條如圖所示的觀光走廊OE、EF和OF,考慮到整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且∠EOF=90°.
(1)設(shè)∠BOE=α,試將△OEF的周長(zhǎng)l表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條走廊每米建設(shè)費(fèi)用均為4000元,試問(wèn)如何設(shè)計(jì)才能使建設(shè)總費(fèi)用最低并求出最低總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心(a,b)(a<0,b<0)在直線y=2x+1上的圓,若其圓心到x軸的距離恰好等于圓的半徑,在y軸上截得的弦長(zhǎng)為 ,則圓的方程為( )
A.(x+2)2+(y+3)2=9
B.(x+3)2+(y+5)2=25
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)兩個(gè)變量y和x進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…,(xn , yn),則下列說(shuō)法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 = x+ 必過(guò)樣本中心( , )
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好
D.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角中,∠,,D、E分別是AB、BC邊的中點(diǎn),沿DE將折起至,且∠.
(Ⅰ)求四棱錐F-ADEC的體積;
(Ⅱ)求證:平面ADF⊥平面ACF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間[2,4]的有8人.
(1)求直方圖中a的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間(10,12]的人數(shù);
(2)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測(cè)試,設(shè)4人中甲班學(xué)生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com