證明三角恒等式:
cos2α-cos2β
cot2α-cot2β
=sin2αsin2β
考點:三角函數(shù)恒等式的證明
專題:三角函數(shù)的求值
分析:直接把等式左邊化切為弦得答案.
解答: 證明:
cos2α-cos2β
cot2α-cot2β

=
cos2α-cos2β
cos2α
sin2α
-
cos2β
sin2β

=
cos2α-cos2β
cos2α•sin2β-cos2β•sin2α
sin2αsin2β

=
cos2α-cos2β
cos2α(1-cos2β)-cos2β(1-cos2α)
sin2αsin2β

=
sin2αsin2β(cos2α-cos2β)
cos2α-cos2β

=sin2αsin2β
點評:本題考查了三角恒等式的證明,考查了同角三角函數(shù)的基本關(guān)系式,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面的四個不等式:①a2+b2+c2≥ab+bc+ca;②a(1-a)≤
1
4
;③
a
b
+
b
a
≥2;④(a2+b2)•(c2+d2)≥(ac+bd)2.其中一定成立的序號依次是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。
A、(2,+∞)
B、(
3
,2)
C、(
2
,
3
D、(1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)二階可導(dǎo),y=f(cosx),求y″.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
1
2
x-1)=2x-5,且f(a)=6,則a等于( 。
A、-
7
4
B、
7
4
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
1
x+1
與直線x=1,x=e,y=0所圍成的封閉圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知xcosθ=a,
y
tanθ
=b(a≠0,b≠0),求證:
x2
a2
-
y2
b2
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x+5,若f[f(x)]=0,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
y≥0
y-x+1≤0
y-2x+4≥0
,若z=y-ax(a≠0)取得的最優(yōu)解(x,y)有無數(shù)個,則a的值為( 。
A、2B、1C、1或2D、-1

查看答案和解析>>

同步練習(xí)冊答案