【題目】如圖,在四棱錐中,底面為正方形, , .

(Ⅰ)若的中點,求證: 平面;

(Ⅱ)若, ,求三棱錐的高.

【答案】I證明見解析;(II.

【解析】試題分析:(Ⅰ)連接,連接.在三角形中,中位線 ,且平面, 平面,∴平面;(Ⅱ)由, 可得與底面垂直,在中,設(shè)的中點為,連接,則是三棱柱的高,計算出三角形面積,利用可求得點到平面的距離為.

試題解析:

連接,連接.在三角形中,

中位線 ,

平面, 平面,

平面.

)在中,設(shè)的中點為,連接,則,又,

,又,

, ,解得.

所以點到平面的距離為: .

【方法點晴】本題主要考查線面平行的判定定理、利用等積變換求三棱錐的高,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||< ),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且ccosA﹣acosC= b.
(1)其 的值;
(2)若tanA,tanB,tanC成等差數(shù)列,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x),若存在常數(shù)a≠0,使得x取定義域內(nèi)的每一個值,都有f(x)=﹣f(2a﹣x),則稱f(x)為“準(zhǔn)奇函數(shù)”.給定下列函數(shù):①f(x)= ,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“準(zhǔn)奇函數(shù)”是(寫出所有“準(zhǔn)奇函數(shù)”的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3x2+cx+d有極值.

(1)求實數(shù)c的取值范圍;

(2)若f(x)在x=2處取得極值,且當(dāng)x<0時,f(x)<d2+2d恒成立,求實數(shù)d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C: + =1(a>b>0)的左右焦點分別為F1 , F2 , 離心率為 ,以原點為圓心,以橢圓C的短半軸長為半徑的圓與直線x﹣y+ =0相切,過點F2的直線l與橢圓C相交于M,N兩點.
(1)求橢圓C的方程;
(2)若 =3 ,求直線l的方程;
(3)求△F1MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點的橫坐標(biāo)構(gòu)成一個公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說法正確的是(
A.在[ , ]上是增函數(shù)
B.其圖象關(guān)于直線x=﹣ 對稱
C.函數(shù)g(x)是奇函數(shù)
D.當(dāng)x∈[ π]時,函數(shù)g(x)的值域是[﹣2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a,b,c.角A,B,C成等差數(shù)列.
(1)求cosB的值;
(2)邊a,b,c成等比數(shù)列,求sinAsinC的值.

查看答案和解析>>

同步練習(xí)冊答案