已知是函數(shù)的一個(gè)極值點(diǎn),其中
(1)求m與n的關(guān)系表達(dá)式。(2)求的單調(diào)區(qū)間
(3)當(dāng)時(shí)函數(shù)的圖象上一任意點(diǎn)的切線(xiàn)斜率恒大于3m,求m的取值范圍
 (2)增區(qū)間   減區(qū)間
(3)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
如圖,某市擬在道路的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線(xiàn)段ABC,該曲線(xiàn)段為函數(shù)y=(A>0,>0,),x∈[-3,0]的圖象,且圖象的最高點(diǎn)為B(-1,);賽道的中間部分為千米的水平跑到CD;賽道的后一部分為以O(shè)圓心的一段圓弧

(1)求的值和∠DOE的值;
(2)若要在圓弧賽道所對(duì)應(yīng)的扇形區(qū)域內(nèi)建一個(gè)“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個(gè)頂點(diǎn)在扇形半徑OD上.記∠POE=,求當(dāng)“矩形草坪”的面積最大時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線(xiàn)的斜率恒成立,求實(shí)數(shù)a的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)若存在實(shí)數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿(mǎn)足,則稱(chēng)直線(xiàn)的“和諧直線(xiàn)”.已知為自然對(duì)數(shù)的底數(shù));
(1)求的極值;
(2)函數(shù)是否存在和諧直線(xiàn)?若存在,求出此和諧直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分) 已知函數(shù) .
(Ⅰ)若函數(shù)在區(qū)間其中a >0,上存在極值,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)
(Ⅰ)若,處的切線(xiàn)相互垂直,求這兩個(gè)切線(xiàn)方程.
(Ⅱ)若單調(diào)遞增,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)圍成的三角形的面積為
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=In(1+x)-+(≥0)。
(1)當(dāng)=2時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的單調(diào)減區(qū)間為                 .

查看答案和解析>>

同步練習(xí)冊(cè)答案