已知圓O的半徑為定長r,A是圓所在平面內(nèi)一定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l與直線OP相交于點(diǎn)Q,當(dāng)P在圓上運(yùn)動時,點(diǎn)Q的軌跡可能是下列圖形中的:    .(填寫所有可能圖形的序號)
①點(diǎn);②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.
【答案】分析:由題意可得,點(diǎn)A可能在圓的外部,可能在圓的內(nèi)部(但不和點(diǎn)O重合)、可能和點(diǎn)O重合、也可能在圓上,在這四種情況下,分別求出點(diǎn)Q的軌跡方程,即可得到答案.
解答:解:(1)當(dāng)點(diǎn)A為⊙O外一定點(diǎn),P為⊙O上一動點(diǎn),
線段AP的垂直平分線交直線OP于點(diǎn)Q,
則QA=QP,則QA-Q0=QP-QO=OP=r.
即動點(diǎn)Q到兩定點(diǎn)A、O的距離差為定值r<OA,
根據(jù)雙曲線的定義,可得點(diǎn)Q的軌跡是:以O(shè),A為焦點(diǎn),r為實軸長的雙曲線的一支.
故⑦滿足條件.
(2)當(dāng)A為⊙O內(nèi)一定點(diǎn),且A不與點(diǎn)O重合,∵P為⊙O上一動點(diǎn),
線段AP的垂直平分線交直線OP于點(diǎn)Q,則QA=QP,
QA=QP=OP-OQ=r-OQ,∴QA+OQ=r>OA,故Q的軌跡是:以O(shè),A為焦點(diǎn),r為長軸的橢圓,
故⑤滿足條件.
(3)當(dāng)點(diǎn)A和原點(diǎn)O重合時,線段AP的垂直平分線交直線OP于點(diǎn)Q,則QA=QP,
點(diǎn)Q是線段OP的中點(diǎn),故有OQ==,
故Q的軌跡是:以O(shè)為圓心,以為半徑的圓,故③滿足條件.
(4)當(dāng)點(diǎn)A在圓上時,線段AP的垂直平分線交直線OP于點(diǎn)Q,則Q和點(diǎn)O重合,
故Q的軌跡是點(diǎn)O,為一個點(diǎn),故①滿足條件.
故答案為①③⑤⑦.
點(diǎn)評:本題主要考查圓、橢圓、雙曲線的定義,軌跡方程的求法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的半徑為定長r,A是圓所在平面內(nèi)一定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l與直線OP相交于點(diǎn)Q,當(dāng)P在圓上運(yùn)動時,點(diǎn)Q的軌跡可能是下列圖形中的:
①③⑤⑦
①③⑤⑦
.(填寫所有可能圖形的序號)
①點(diǎn);②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山東省兗州市高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:選擇題

已知圓O的半徑為定長r,是圓O外一定點(diǎn),P是圓上任意一點(diǎn),線段的垂直平分線和直線相較于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動時,點(diǎn)的軌跡是(    )

A.圓          B.橢圓           C.雙曲線一支        D.拋物線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省武漢外國語學(xué)校高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知圓O的半徑為定長r,A是圓所在平面內(nèi)一定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l與直線OP相交于點(diǎn)Q,當(dāng)P在圓上運(yùn)動時,點(diǎn)Q的軌跡可能是下列圖形中的:    .(填寫所有可能圖形的序號)
①點(diǎn);②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省安慶市樅陽三中高二(上)第二次段考數(shù)學(xué)試卷(解析版) 題型:填空題

已知圓O的半徑為定長r,A是圓所在平面內(nèi)一定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線l與直線OP相交于點(diǎn)Q,當(dāng)P在圓上運(yùn)動時,點(diǎn)Q的軌跡可能是下列圖形中的:    .(填寫所有可能圖形的序號)
①點(diǎn);②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

同步練習(xí)冊答案